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The extent to which a scale score generalizes
to a latent variable common to all of the scale’s
indicators is indexed by the scale’s general factor
saturation. Seven techniques for estimating this

simulations when a general factor was absent.
Major findings were replicated in a series

of 40 additional artificial data sets based on the
structure of a real scale widely believed to contain

parameter—omegayerarchical (W5 )—are compared
in a series of simulated data sets. Primary
comparisons were based on 160 artificial data sets
simulating perfectly simple and symmetric
structures that contained four group factors, and
an additional 200 artificial data sets confirmed
large standard deviations for two methods in these

three group factors of unequal size and less than
perfectly simple structure. The results suggest that
alpha and methods based on either the first
unrotated principal factor or component should be
rejected as estimates of w,. Index terms:
generalizability, alpha, omega, factor analysis,
measurement, reliability.

Many scales are assumed by their developers and users to be primarily a measure of one latent
variable. When it is also assumed that the scale conforms to the effect indicator model of measure-
ment (as is almost always the case in psychological assessment), it is important to support such an
interpretation with evidence regarding the internal structure of that scale (Bollen & Lennox,
1991). In particular, it is important to examine two related properties pertaining to the internal
structure of such a scale. The first property relates to whether all the indicators forming the scale
measure a latent variable in common.

The second internal structural property pertains to the proportion of variance in the scale
scores (derived from summing or averaging the indicators) accounted for by this latent variable
that is common to all the indicators (Cronbach, 1951; McDonald, 1999; Revelle, 1979). That is,
if an effect indicator scale is primarily a measure of one latent variable common to all the indica-
tors forming the scale, then that latent variable should account for the majority of the variance in
the scale scores. Put differently, this variance ratio provides important information about the
sampling fluctuations when estimating individuals’ standing on a latent variable common to all
the indicators arising from the sampling of indicators (i.e., when dealing with either Type 2 or
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Type 12 sampling, to use the terminology of Lord, 1956). That is, this variance proportion can be
interpreted as the square of the correlation between the scale score and the latent variable common
to all the indicators in the infinite universe of indicators of which the scale indicators are a subset.
Put yet another way, this variance ratio is important both as reliability and a validity coefficient. This
is a reliability issue as the larger this variance ratio is, the more accurately one can predict an indivi-
dual’s relative standing on the latent variable common to all the scale’s indicators based on his or her
observed scale score. At the same time, this variance ratio also bears on the construct validity of the
scale given that construct validity encompasses the internal structure of a scale.

An index corresponding to this variance ratio can be defined in a model labeled by McDonald
(1999) as the hierarchical factor model, in which it is assumed that observed scores may be decom-
posed into four parts:

x=Gg+AF+DS+E, (1)

where g is a general factor (i.e., a factor common to all k scale indicators), G is a k x 1 vector of
unstandardized general factor loadings (with each unstandardized loading being equal to the item’s
standardized loading times its SD), F is an r x 1 vector of group factors (i.e., factors that are common
to some but not all k indicators) with r < k, A is the k x r matrix of unstandardized group factor load-
ings, S is the k x 1 vector of specific factors unique to each item, D is the k x k diagonal matrix of
unstandardized factor loadings on the item specific factors, and E is the k x 1 vector of random error
scores as above. The model expressed in (1) assumes also that all factors (g, F, and S) are uncorre-
lated with each other, and with E, all the errors (in E) are uncorrelated with each other, without loss
of generality that the variance of each of the common factors (g and those in F) equals 1. In addition,
each of the group factors (in F) is required to have nonzero loadings on at least three indicators to
identify the model in the absence of additional constraints.

Given the model in (1), a coefficient relating to an important psychometric property—
OMEgApicrarchical (@),)—is defined as
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where S is the observed variance/covariance matrix among the k indicators comprising the scale,
and wy, is the proportion of variance in the scale scores accounted for by a general factor. Of course,
(2) still holds even in the special case when there are no group factors in which (1) reduces to
x=Gg+DS+E." w, can be interpreted as the square of the correlation between the scale score
and the latent variable common to all the indicators in the infinite universe of indicators of which the
scale indicators are a subset (McDonald, 1999). Thus, the larger w), is, the more strongly one’s scale
scores are influenced by a latent variable common to all the indicators, and the more the observed
scale scores can be said to generalize to scores on that latent variable.

The first psychometric property described above, that there is a latent variable common to all of
the scale’s indicators, is clearly a requisite assumption for the definition of w,. Whenever possible,
this assumption should be formally tested via the appropriate use of confirmatory factor analysis
(CFA) or via Stout’s methods for evaluating whether a scale is essentially unidimensional. The
primary focus in this article, however, is on methods for estimating w), rather than on methods for
conducting formal tests of this assumption. The reasons for this are fourfold. First, there are no
published studies comparing the several different methods that one might use to estimate w,. In
contrast, there are already many excellent discussions of the use of CFA for testing the assump-
tions underlying one’s measurement model; for some examples, see Bollen (1989), Drewes



R. E. ZINBARG, I. YOVEL, W. REVELLE and R. P. MCDONALD
A COMPARISON OF ESTIMATORS FOR w;, 123

(2000), Joreskog (1971, 1974), McDonald (1981, 1999), Raykov, (1997), and Reuterberg and
Gustafsson (1992). (For examples of CFA tests of the assumption that all of a scale’s indicators
measure a latent variable in common and of the use and interpretation of w;, with real data sets, see
Mohlman & Zinbarg, 2000; Zinbarg, Barlow, & Brown, 1997).

Second, there are likely to be times in practice when the model testing approach fails. For
example, failure to include appropriate comparison models could lead an investigator to accept
a measurement model containing a general factor when in fact there is no general factor. In such
cases, it would be important to know whether an w; estimate based on this erroneously accepted
model is likely to produce a value reasonably close to zero.

Third, there will be situations in which scale users might not have strong expectations
regarding the number of group factors to include in the measurement model and/or which indi-
cators load on each of the group factors. In such cases, Fabrigar, Wegener, MacCallum, and
Strahan’s (1999) suggestion that exploratory factor analysis (EFA) is a more sensible approach
than CFA seems reasonable, and EFA does not permit formal testing of the assumption of
a latent variable common to all of a scale’s indicators. Despite the inability to conduct a formal test
of this assumption in such cases, estimating wj, can still provide useful information regarding the
justifiability of aggregating across each member of a set of indicators to derive a scale score.

Finally, either a CFA test of the assumption that there is a latent variable common to all of the
scale’s indicators or a test of essential unidimensionality results in a binary decision: Either there
is a general factor present or not; either the scale is essentially unidimensional or not. In contrast,
)y, provides a quantitative estimate indexing how well the scale measures its general factor. A scale
can be essentially unidimensional but still not measure its dominant factor very well if, for exam-
ple, it contains few indicators that are each only weakly saturated with the underlying common
factor. Conversely, a scale can be clearly multidimensional but still have a single factor that is
common to all the scale’s indicators and that accounts for a large proportion of the variance in
scale scores. That is, whereas essential unidimensionality is an important and interesting concept
in its own right, it can be seen that essential unidimensionality is neither necessary nor sufficient
for w, to be high. Put differently, w, provides important quantitative information about the reli-
ability and validity of a scale that cannot be obtained from either a CFA inferential hypothesis test-
ing procedure or an inferential test of essential unidimensionality.

Thus, the primary purpose of this article is to address the gap in the literature regarding the rela-
tive performance of different methods of estimating wj,. A discussion of the relationship between
wy, and McDonald’s (1985, 1999) omegas and the importance of w), is presented, followed by a dis-
cussion of several methods of estimating w,. Finally, a Monte Carlo study of the performance of
these different methods of estimating wy, is reported.

Relationship With McDonald’s Omegas and the Importance of v,

Equation (2) is algebraically equivalent to one of the expressions that McDonald (1985, 1999)
has labeled omega (w). Specifically, if A,; is the loading of indicator j on the general factor, then
equation (2) is equivalent to McDonald’s (1985, p. 217) equation (7.3.8) or to McDonald’s (1999,
p- 89) equation (6.20a), which—using our notation of w,—reads

_ (Zf;l )‘gj)2 )

wp = 1'S1 (3)

Of course, (3) is simpler and more efficient to use than (2) when calculating w, by hand.
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However, McDonald (1985, equation (7.3.9); 1999, equation (6.2.1)) also identified another
expression and used the same label of w for it and (3). McDonald’s (1985, p. 217) equation (7.3.9)
or McDonald’s (1999, p. 89) equation (6.2.1) reads as follows:

o=1-"s1 @
where the d;s; and e; components from (1) combine to form u;—the item ‘“uniqueness”
u;=ds; +e. ®))
Equation (4) is algebraically equivalent to
Pyl IAA!
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It is readily apparent from (2) and (6) that w and w, are different parameters, with @ > w; and
equality holding in the case of a unidimensional scale only (McDonald, 1985, 1999; Zinbarg,
Revelle, Yoveld, & Li, 2005). In differentiating the labels for these two, Zinbarg et al. (2005)
retained McDonald’s (1985, 1999) label of w for (4) and (6) but gave (2) and (3) the new label of
wy,. The primary consideration underlying this decision was that the parameter expressed by (2)—
or, equivalently, by (3)—is specific to the hierarchical factor model, whereas (4) may be defined in
either the hierarchical factor model or what McDonald (1999) labels the independent clusters fac-
tor model. In addition, other references to McDonald’s w have tended to focus on the parameter
equivalent to (4) or (6).

Before discussing the different methods for estimating w, it might be useful to briefly discuss
why w), is important. One might wonder, for example, if one knows that w or a conventional reliabil-
ity estimate is high for a particular scale, why should one care about the value of ), for that scale? If
wy, were low for such a scale, it might indicate that (a) the universe from which one’s scale indicators
are sampled is multifaceted, and (b) the scale scores are a result of the largely independent contribu-
tions of what is unique to several of these facets, without much of a contribution from a latent con-
struct that is common to all the facets. If so, it would be unclear (a) which facet is accounting for
a given relationship between the scale scores and some other variable and (b) which facets are ele-
vated among individuals who obtain moderately high scale scores. In such cases, it would be more
appropriate for scale users to derive two or more subscale scores from the instrument rather than
a single scale score to clarify theoretical understanding of relations with other variables and to avoid
equating individuals who have very different profiles across the multiple facets (for related discus-
sions, see Kelley, 1942; McNemar, 1946; Mosier, 1936). The other possible implication of a low
value of w, when w or a conventional reliability estimate is high for a particular scale is that there
are several indicators that should be eliminated because they do not load on the dominant factor that
is loaded on by most of the indicators.

Methods for Estimating ),

In practice, of course, one never knows the loadings of a scale’s indicators on a factor but can
only estimate these loadings and thus can only estimate wj,. This study chose to focus on those
methods that appear to be most commonly used by applied researchers for extracting a general
factor and estimating its loadings. Finally, it is suspected that coefficient alpha is frequently used
by researchers as an estimate of wj,; therefore, alpha was also included in the comparisons.
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Does alpha estimate w,? In fact, McDonald (1970, 1985, 1999) has proven that coefficient
alpha is a special case of w, when the indicators conform to the classical test-theory assumptions
underlying alpha—that is, when the indicators are unidimensional and essentially tau-equivalent
and that measurement errors are uncorrelated. However, alpha should provide biased estimates of
w;, when these assumptions are violated, with the direction of the bias depending on the assump-
tion or assumptions violated (Zinbarg et al., in press; for related discussions, see Komaroff, 1997;
Zimmerman, Zumbo, & Lalonde, 1993). On one hand, alpha will tend to underestimate w), for
a unidimensional set of indicators that are not essentially tau-equivalent (e.g., McDonald, 1970,
1985, 1999; Raykov, 1997). On the other hand, several authors have noted that alpha tends to over-
estimate the proportion of variance due to a general factor when the indicators are multidimensional
(e.g., Cronbach, 1951; Revelle, 1979; Schmitt, 1996).

In fact, many scales used in psychological and educational measurement are multidimensional.
As one example, consider the various IQ scales that have been hypothesized to consist of various pri-
mary mental abilities at the first-order level, higher order group factors, such as the well-known Verbal
and Performance factors at the second-order level and a general factor at the highest order level (e.g.,
Vernon, 1969). Many other examples of hierarchical/higher order structures could be given from other
domains, including personality scales (e.g., Costa & McCrae, 1985; Waller, Lilienfeld, Tellegen, &
Lykken, 1991; Zinbarg, Mohlman, & Hong, 1999), affect scales (e.g., Tellegen, Watson, & Clark,
1999; Watson & Clark, 1992), and psychopathology scales (e.g., Beck & Steer, 1993a, 1993b; Foa,
Riggs, Dancu, & Olasov-Rothbaum, 1993; Zinbarg & Barlow, 1996). Given that (a) multidimensional
scales are common and (b) the problem of alpha overestimating ), for a multidimensional scale has
received less theoretical and empirical attention than the problem of alpha underestimating ), for uni-
dimensional indicators that are not essentially tau-equivalent, the focus in the remainder of this article
is on the multidimensional case in which alpha should overestimate wy,.

Although the discussion of alpha primarily focuses on the tendency of alpha to overestimate wj,
for multidimensional scales, there is another problem associated with alpha in the multidimen-
sional case. In the words of Osburn (2000), there is a tendency for “coefficient alpha to underesti-
mate the true reliability when the data are multidimensional” (p. 343), where by true reliability,
Osburn must have been referring to the proportion of variance due to all common factors. In fact,
there is a large literature on alpha’s tendency to underestimate the proportion of variance due to all
common factors for a multidimensional scale, and several indices to overcome this limitation,
such as stratified alpha, maximal reliability, or Guttman’s (1945) Lambda 2, have been studied
fairly extensively (e.g., Cronbach, Schoneman, & McKie, 1965; Feldt & Brennan, 1989; Kristof,
1974; Li, Rosenthal, & Rubin, 1996; Osburn, 2000). Moreover, the problem of alpha underesti-
mating the proportion of variance due to all common factors is important as it will lead to overcor-
rection when alpha is used to correct for attenuation. This problem has been much more widely
studied, however, than that of alpha overestimating wj;, for a multidimensional scale.

There are additional complexities associated with traditional reliability estimates that are illu-
minated by generalizability theory and should be considered in relation to w,. The generalizability
theory distinction between absolute error and relative error and analysis of the effects of sampling
scheme on error variance clearly show that one’s research purpose (i.e., whether one is interested
in making “absolute” vs. “relative” interpretations of test scores) and design can affect error var-
iances. In this regard, it is important to note that w, is a generalizability coefficient that employs
relative error variance rather than absolute error variance. Sampling scheme, however, will
typically not have an effect on wy,.

Factor-analytic methods. Four methods derived from factor analysis are considered and com-
pared in the remainder of this article: (a) perform an EFA using the principal factor method of
extraction (PF) and use the loadings on the first unrotated PF as estimates of the general factor
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loadings (first PF method) (see Goldberg, 1999, for an example of the application of this technique
for the purpose of estimating general factor loadings); (b) perform a higher order EFA analysis
using the PF method of extraction (i.e., extract two or more obliquely transformed first-order prin-
cipal factors and then use PF to extract higher order factors based on the correlations among the
obliquely transformed first-order principal factors), relate the indicators directly to the highest
order PF (using the transformation originally described by Schmid & Leiman, 1957; also see
Loehlin, 1998, pp. 225-228), and use the loadings on the highest order PF as estimates of the gen-
eral factor loadings (HO-PF method); (c) perform a CFA of a higher order factor model and relate
the indicators directly to the highest order factor to estimate the loadings of the indicators on the
general factor (HO-CF method); and (d) perform a CFA of a hierarchical factor model similar
in form to equation (1), in which each indicator loads directly on a general factor in addition to
loading on at least one group factor (Hi-CF method).

Principal components analysis (PCA) methods. PCA is another procedure that some research-
ers use to represent the structure of the correlations among a set of variables. Although the theoret-
ical model underlying PCA is inconsistent with the factor-analytic model underlying w, (e.g.,
Bentler & Kano, 1990; Gorsuch, 1983, 1990; McArdle, 1990; Mulaik, 1990; Snook & Gorsuch,
1989; Widaman, 1990, 1993), a series of investigations by Velicer (1974, 1976, 1977) and his
associates (Velicer & Fava, 1987; Velicer & Jackson, 1990a, 1990b; Velicer, Peacock, & Jackson,
1982) has shown that PCA and EFA produce highly similar solutions under many conditions. In
addition, although Snook and Gorsuch (1989) and Widaman (1993) have identified conditions in
which there are reliable differences between the two methods, Widaman found that PCA produces
larger estimates of loadings on primary dimensions and smaller estimates of intercorrelations
among the primary dimensions than EFA under these conditions. These two biases may tend to
offset each other when computing loadings on second-order dimensions (especially if one follows
the recommendation of Gorsuch, 1983, pp. 243-244, and uses PF for the second-order factor anal-
ysis of the correlations among the obliquely transformed first-order principal components). That
is, even in the conditions in which Widaman found reliable differences between the lower order
estimates produced by PCA and EFA, the two methods may produce essentially equivalent esti-
mates of second-order loadings. In addition, PCA is the default option in many of the major statis-
tical program packages and has been reported in the past to be more widely used than EFA
(Pruzek & Rabinowitz, 1981; also see Lilly, Hoaglin, & Anderson-Kulman, 1989, cited in Velicer
& Jackson, 1990a). Thus, it is important to examine w, estimates based on PCA to see if w;, gives
reasonable results, even when it is estimated in a manner that conflicts with the theoretical model
that permitted its derivation in the first place.

Two methods derived from PCA analysis were therefore also considered: (a) perform a PCA and
use the loadings on the first unrotated PC as estimates of the general factor loadings (first PC) (again
see Goldberg, 1999, for an example of the application of this technique for the purpose of estimating
general factor loadings), and (b) perform a higher order PCA (i.e., extract two or more obliquely
transformed first-order principal components and then, following the recommendation of Gorsuch,
1983, use PF to extract higher order factors based on the correlations among the obliquely trans-
formed first-order principal components), relate the indicators directly to the highest order
dimension, and use the loadings on the highest order dimension as estimates of the general factor
loadings (HO-PC).

Study Questions

This study compared the usefulness of (a) the two methods for estimating ), derived from EFA
(first PF and HO-PF), (b) the two methods derived from CFA (HO-CF and Hi-CF), (c) the two
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methods derived from PCA (first PC and HO-PC), and (d) alpha. These were first applied to artificial
data sets that simulated perfectly simple and symmetric structures containing four group factors but
that varied in terms of the presence and strength of a general factor (the intended meaning of per-
fectly simple and symmetric in this context is that each item had loadings of zero on all but one group
factor, and the group factors were exactly equal in size). In the first general factor loading pattern
condition, the general factor loadings were set equal to O to simulate conditions in which a general
factor is absent. In the second general factor loading pattern condition, the general factor loadings
were set equal to .274 to simulate a relatively weak general factor. In the third general factor loading
pattern condition, the general factor loadings were set equal to .274 for the indicators defining two of
the group factors and .500 for the indicators defining the remaining two group factors to simulate
a moderately strong general factor with some degree of heterogeneity in the general factor loadings.
In the fourth general factor loading pattern condition, the general factor loadings were set equal to
.500 to simulate a relatively strong general factor. A second independent variable that was systemati-
cally varied was the sample size, n. This study chose two levels of n: 100 and 200. The third and final
independent variable was the number of indicators or scale length, k. Two levels of k were chosen:
12 indicators (3 indicators per group factor) and 20 indicators (5 indicators per group factor). This
variable was included to study the effects of scale length on the various w), estimates because the bias
inherent in alpha tends to increase with scale length, whereas it has been noted that differences
between PF and PC analyses tend to diminish with increased scale length (e.g., Gorsuch, 1983,
Nunnally, 1978; Snook & Gorsuch, 1989; Widaman, 1993).

Certain findings to follow are reasonably well documented in the literature; for example, the
first unrotated factor or component often indicates the presence of a strong general dimension,
even when none exists (Jensen & Weng, 1994; Nunnally, 1978). Thus, a relatively brief amount of
space is devoted to findings that are additional demonstrations of such effects. Of main interest is
an examination of whether the HO-PF, HO-CF, HO-PC, and Hi-CF methods of estimating wj, are
more accurate than alpha and the first PF and first PC methods. A good estimator should be
(a) unbiased and (b) relatively efficient, and (c) its accuracy should be stable across different general
factor loading patterns, sample sizes, and scale lengths.

To begin to test the generalizability of the results from the initial series of 160 artificial data
sets, 40 additional artificial data sets were generated based on the structure of widely used scales
in the measurement of anxiety—the Anxiety Sensitivity Index (ASI; Reiss, Peterson, Gursky, &
McNally, 1986). The structure of the ASI is useful for testing the generalizability of the major findings
from the initial series of 160 simulated data sets as it is thought to differ in several ways from the per-
fectly simple and symmetric four-group factor structures simulated in the initial series of 160 artificial
data sets. That is, the ASI has been consistently found to contain three group factors, with one group
factor much larger than the other two and with several indicators having group factor cross-loadings
(e.g., Mohlman & Zinbarg, 2000; Zinbarg et al., 1997; Zinbarg et al., 1999). Thus, of the 16 indicators
comprising the ASI, 8 have their primary loadings on the first group factor, and the remaining 8 indica-
tors are evenly divided between the second and third group factors. In addition, using 0.15 as a cutoff
for cross-loadings, Zinbarg et al. (1997) found that 4 ASI indicators have a cross-loading on a second
group factor, in addition to their primary group factor loading and one item loaded on all three group
factors.

Method

For all analyses, artificial data sets were generated using EQS (Bentler, 1989). In the initial
series of simulations, 10 artificial data sets were created within each of the 16 conditions resulting
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from the 4 (type of higher order structure: higher order factor absent, weak higher order factor
loadings, mixed higher order factor loadings, and strong higher order factor loadings) X
2(n : 100 vs.200) x 2(k, 12vs.20) design. In each simulation, the indicators were divided into
four equal-sized sets of indicators (thus there were three indicators per set in the k = 12 condition
and five indicators per set in the k =20 condition).

The higher order factor model representations of the models underlying these simulations were as
follows. In all of the models, every indicator within each of the four sets of indicators had a loading
of .707 on that set’s group factor. For the 40 simulations that did not contain a general factor, all four
group factors had loadings of 0 on the second-order factor. For the 40 simulations in the weak gen-
eral factor loadings condition, the four group factors had loadings of .387 on the second-order factor.
For the 40 simulations in the mixed general factor loadings condition, the first two group factors had
loadings of .387 on the second-order factor, whereas the last two group factors had second-order fac-
tor loadings of .707. For the 40 simulations in the strong general factor loadings condition, the four
group factors had loadings of .707 on the second-order factor. These models produced the following
population correlation matrices. In each condition, indicators loading on the same group factor cor-
related .50. In the general factor absent condition, indicators loading on different group factors corre-
lated 0. In the weak general factor loading condition, indicators loading on different group factors
correlated .075. In the mixed general factor loading condition, indicators loading on Group Factor 1
correlated .075 with indicators loading on Group Factor 2, indicators loading on Group Factors 1
and 2 correlated .137 with indicators loading on Group Factors 3 and 4, and indicators loading on
Group Factor 3 correlated .25 with indicators loading on Group Factor 4. Finally, in the strong gen-
eral factor loadings condition, indicators loading on different group factors correlated .25.

The factors and errors and hence measured variables in each simulation were multivariate nor-
mally distributed. Given that many measurement scales are composed of indicators that yield non-
normal and/or categorical data, the choice to model multivariate normally distributed indicators
limits the generality of the results reported here and therefore deserves comment. The reasoning
behind this choice was prosaic yet may be sensible nevertheless. First, the methods employed here
often produce results when applied to nonnormal and/or categorical data that converge very
strongly with the results of methods that were explicitly developed for nonnormal and/or categori-
cal data (e.g., factor loadings are often correlated .90 or higher with item slope estimates from IRT
analyses). Second, it could be argued that a reasonable strategy for an initial test of different meth-
ods for estimating wy, is to conduct this test using conditions that maximize the likelihood that at
least some of the methods would perform well. That is, before undertaking the more difficult task
of testing these methods in simulations of categorical variables, one might want to know if there
are any conditions in which w, could be estimated in a relatively unbiased and efficient manner.
Finally, w), could be easily adapted for use with the nonlinear factor analysis model developed by
McDonald (1963, 1965, 1999) explicitly for use with categorical data. (A detailed description of
checks on the adequacy of the data generation procedure and more details regarding the simulation
methods are available upon request from Richard E. Zinbarg.) Coefficient alpha was computed for
each artificial data set using the SPSS (Nie, Hull, Jenkins, Steinbrenner, & Bent, 1975) reliability
procedure. PCAs and EFAs were conducted using the SPSS (Nie et al., 1975) factor procedure
with oblimin rotation for the higher order solutions and iterative estimates of communality using
the squared multiple correlation (SMC) as the initial estimate for PF extraction. Each higher order
EFA was conducted by extracting four first-order factors, rotating them using oblimin (with delta
set to 0), and then subjecting the intercorrelation matrix of the first-order factors to a factor analy-
sis and extracting a single second-order factor (note that one could use other methods of oblique
rotation other than oblimin but could not use an orthogonal method such as varimax, which is the
default option for many computer packages). CFAs were conducted using EQS (Bentler, 1989)
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and maximum likelihood estimation. Each higher order CFA fit a model in which there were four
group factors that were each loaded on by one fourth of the indicators, and each of the group fac-
tors loaded on a single second-order factor. Each hierarchical CFA fit a model consisting of one
general factor, which was loaded on by all indicators, and four group factors, which each were
loaded on by one fourth of the indicators. It should be noted that the dimensionality of the higher
order EFA, PCA, and CFA models equaled four, whereas the dimensionality of the hierarchical
CFAs equaled five. This is because in the higher order models, the higher order dimension lies
entirely in the space defined by the primary four dimensions, whereas in the hierarchical CFA
models, the general factor does not lie in the space defined by the group factors given that all five
factors were constrained to be mutually orthogonal. w, estimates from all seven methods (first PF,
first PC, HO-PF, HO-PC, HO-CF, Hi-CF, and coefficient alpha) for each sample were compared
to the population w;, value by subtracting the population value from each of the estimates. The
resulting difference scores provided a direct measure of the bias of the w);, estimates and alpha as
compared to the population w, values. This yielded seven sets of difference scores, which were
analyzed by a repeated-measures multivariate analysis of variance (MANOVA) in which the type
of higher order structure was a between-groups factor with four levels, number of indicators was
a between-groups factor with two levels, and sample size was a between-groups factor with two
levels. The repeated-measure factor of estimate type had seven levels and was decomposed into
a set of five planned contrasts. The first contrast was designed to test the hypotheses of primary
interest—namely, that the HO-PAF, HO-PC, HO-CF, and Hi-CF methods (the putatively accu-
rate methods) are better than alpha and the first PF and first PC methods (the putatively inaccu-
rate methods). Thus, Contrast 1 contrasts the four putatively accurate methods with the three
putatively inaccurate methods. Contrast 2 tests for differences among the putatively inaccurate
methods; specifically, it contrasts alpha with the first PF and first PC estimators. Contrasts 3, 4,
and 5 were designed to test for differences among the four putatively accurate methods. Contrast 3
contrasts the two exploratory methods (HO-PF and HO-PC) with the two CFA methods (HO-CF
and Hi-CF). Contrast 4 contrasts the HO-PF method with the HO-PC method. Contrast 5 contrasts
the HO-CF method with the Hi-CF method. Based on the findings of Jensen and Weng (1994), it
was predicted that any differences involving Contrasts 3, 4, and 5 would be trivially small.

Results

Table 1 presents the correlations among the population values of w, and the seven estimators of
wy, across all 160 simulations. Table 2 presents the population values of w, and the mean differ-
ence scores for the seven methods of estimating w,, across the four types of structures and two
levels of the number of indicators simulated in this study. The standard errors were very small for
almost all of the comparisons owing to the repeated-measures design and the very high correla-
tions among most of the estimators. Therefore, it is important to focus heavily on effect size esti-
mates in addition to statistical significance. The results were collapsed across the two different
levels of sample size as almost all effects involving sample size were nonsignificant, all were trivi-
ally small (n* values < .006), and the standard deviations were not appreciably smaller for the
larger sample sizes for all but one of the seven estimators (the ratio of the standard deviation in the
larger sample size condition divided by the standard deviation in the smaller sample size condition
equaled 1.001, 1.005, 1.050, 0.935, 0.911, 0.935, and 0.786, respectively, for alpha and the first
PF, first PC, HO-PF, HO-PC, HO-CF, and Hi-CF methods).

Contrast 1: The four putatively accurate methods versus the three putatively inaccurate methods.
The main effect of Contrast 1 was significant (£ 14 = 1680.12, p <.001; n* =.65), indicating that
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Table 1

Intercorrelations Among Population Values and the Seven Methods of Estimating w,

Estimator wy, o First PF First PC HO-PF HO-PC HO-CF
o .84

First PF .82 .83

First PC 78 77 .99

HO-PF .95 .88 .85 .81

HO-PC .95 .88 .85 .81 .99

HO-CF .94 .86 .80 75 97 97

Hi-CF 93 .83 75 .70 .96 .96 .95

Note. w, = population value of w,,« = coefficient alpha; first PF = w, estimate based on the first unrotated
principal factor; first PC = w, estimate based on the first unrotated principal component; HO-PF = w), esti-
mate based on a higher order exploratory factor analysis; HO-PC = w, estimate based on a higher order prin-
cipal components analysis; HO-CF = w, estimate based on a higher order confirmatory factor analysis;
Hi-CF = w, estimate based on a hierarchical confirmatory factor analysis.

the average of the four putatively accurate methods was more accurate (less positively biased) than
the average of the three putatively inaccurate methods when aggregated across all conditions
(M =.023, SD =.086 vs. M =.356, SD = .153). Importantly, although this main effect was mod-
erated by two interactions discussed in more detail below, the average of the four putatively accurate
methods was less positively biased than the average of the putatively inaccurate methods in every
condition in these simulations.

The two-way interactions of Contrast 1 x the type of general factor loading pattern (F3 144 = 44.11,
p <.001, n? =.05) and Contrast 1 x the number of indicators (F} 144 =4.99, p <.05;%n*=.002)
were significant. The significant interaction of Contrast 1 x the type of general factor loading pattern
resulted from the fact that the performance of the four putatively accurate methods varied less across
the different general factor loading patterns (general factor absent condition: M = .10, weak higher
order loadings: M = —.02, mixed higher order loadings: M = .04, and strong higher order loadings:
M = —.04) than was the case for the three putatively inaccurate methods. That is, whereas the three
putatively inaccurate methods were positively biased regardless of the type of general factor loading
pattern, they were not as positively biased in the strong higher order loadings condition as in the other
three general factor loading conditions (general factor absent condition: M = .38, weak higher order
loadings: M = .46, mixed higher order loadings conditions: M = .38, and strong higher order loadings
condition: M = .20). The two-way interaction of Contrast 1 x the number of indicators was associated
with such a trivially small effect size that its practical significance is highly questionable and will not be
discussed further. No other effects involving Contrast 1 were significant.

To summarize the results for Contrast 1, compared with the three putatively inaccurate methods
of estimating wy,, the four putatively accurate methods were more accurate (less positively biased).
The four putatively accurate methods were also more stable across general factor loading patterns.

Contrast 2: First PF and first PC versus alpha. The interaction of Contrast 2 by the type of gen-
eral factor loading pattern was significant (F3 ;44 = 109.46, p <.001, n* = .28), as was the interac-
tion of Contrast 2 x the number of indicators (F3 44 = 6.64,p < .05, n> =.01). The significant
interaction of Contrast 2 x the type of general factor loading pattern resulted from alpha being sig-
nificantly more positively biased in the general factor absent condition (first PF and first
PC: M = .27; alpha: M =.61) but significantly less positively biased in the weak higher order
loadings (first PF and first PC: M = .50; alpha: M = .38), mixed higher order loadings (first PF and
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Table 2

Mean Differences Between Estimated and Population Values of w,,: Four Group Factor Simulations

k wp, o First PF First PC HO-PF HO-PC HO-CF Hi-CF
)"G =0
12 .00 534 191 245 .079 .078 156 .069
(.057) (.232) (.284) (.066) (.065) (.114) (.070)
20 .00 .691 297 335 .094 .095 170 .089
(.056) (.286) (.328) (.082) (.082) (.106) (.071)
Weak Ag
12 .34 .336 406 .568 —.035 —.036 .019 —.067
(.036) (.157) (.189) (.074) (.072) (.079) (.107)
20 .36 432 464 574 —.012 —.015 .044 —.055
(.026) (.094) (.102) (.076) .077) (.062) (.133)
Mixed Ag
12 43 333 410 .546 .076 .073 129 127
(.030) (.027) (.020) (.057) (.057) (.057) (.061)
20 .58 272 317 409 —.048 —.043 .026 .004
(.012) (.012) (.010) (.039) (.041) (.031) (.035)
Strong Ag
12 1 123 176 291 —.071 —.082 —.006 —.012
(.025) (.019) (.002) (.054) (.055) (.050) (.049)
20 74 159 .188 257 —.059 —.066 .008 .001
(.014) (.009) (.002) (.049) (.049) (.039) (.052)
.360 .306 403 .003 .001 .068 .020
(.181) (.178) (.214) (.088) (.091) (.098) (-100)

Note. k = the number of indicators; w;, = population value of w,, o = coefficient alpha; first PF = w), estimate
based on the first unrotated principal factor; first PC = w), estimate based on the first unrotated principal compo-
nent; HO-PF = w,, estimate based on a higher order exploratory factor analysis; HO-PC = w), estimate based on
a higher order principal components analysis; HO-CF = w, estimate based on a higher order confirmatory factor
analysis; Hi-CF = w), estimate based on a hierarchical confirmatory factor analysis; A; = population values of
loadings of indicators on a general factor. Standard deviations are in parentheses. As the data were aggregated
across the two levels of sample size, each of the eight conditions resulting from the 2 (k: 12 vs. 20) x 4 (type of
general factor loading pattern) displayed in this table contained 20 replications. The bottom two rows display
the results aggregated across all 160 replications.

first PC: M = .42; alpha: M = .30), and strong higher order loadings (first PF and first PC: M = .23;
alpha: M =.14) conditions. The two-way interaction of Contrast 2 x the number of indicators
resulted from the number of indicators having a greater effect on alpha (n> =.03) than on the first
PF and first PC methods (? = .00), with alpha becoming more positively biased with more indica-
tors (k=12 : M =.33 vs. k=20, M = .39), whereas the positive bias in the first PF and first PC
methods did not get worse with more indicators (k=12 : M = .35 vs. k=20 : M =.36). No other
effects involving Contrast 2 were significant.
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To summarize the results for Contrast 2, when aggregated across all conditions, alpha
(M = .36) and the first PF and first PC methods (M = .35) were comparably positively biased.
However, alpha was much more positively biased when a general factor was absent and somewhat
less positively biased in the weak, mixed, and strong higher order loadings conditions. Finally, the
bias associated with alpha did increase with scale length, whereas the bias associated with the first
PF and first PC methods did not.

Contrast 3: Exploratory versus confirmatory methods. The main effect of Contrast 3 was signif-
icant (F) 144 =119.21, p <.001) though very small (n*=.05), indicating that, even though the
average bias associated with both types of methods was small, the average of the HO-PF and
HO-PC methods (M =.002, SD = .090) was slightly less positively biased than the average of the
HO-CF and Hi-CF methods (M = .044, SD = .090) when aggregated across all conditions. Not only
was this main effect associated with a very small effect size, but it was also moderated by a signifi-
cant interaction of Contrast 3 by type of general factor loading pattern (F3 14 = 10.90, p <.001).
Although this interaction was associated with a trivially small effect size (y> = .01), the interaction
resulted from inconsistency across the general factor loading pattern conditions in terms of whether
the CFA or exploratory approaches were less biased. That is, the putatively accurate CFA
approaches were nonsignificantly less negatively biased in the weak higher order loadings con-
dition (M = —.015) and the strong higher order loadings condition (M = —.002) than the puta-
tively accurate exploratory approaches (weak higher order loadings condition: M = —.024,
strong higher order loadings condition: M = —.070), whereas the exploratory approaches were
significantly less positively biased in the general factor absent (confirmatory: M = .121, exploratory:
M = .087) and mixed higher order loadings (confirmatory: M = .071, exploratory: M =.014)
conditions (a pattern of interaction that makes the importance of the main effect questionable).
Finally, the interaction of Contrast 3 x the sample size was significant (F; 44 =13.22, p <.001;
n* = .006) but was associated with such a trivially small effect size that its practical significance is
highly questionable and will not be discussed further. There were no other significant effects involv-
ing Contrast 3.

To summarize the results for Contrast 3, the results reversed from one type of general factor load-
ing pattern to the next in terms of whether the exploratory procedures or the CFA procedures were
less biased. Importantly, both the putatively accurate exploratory procedures and the putatively
accurate confirmatory procedures tended to perform well in most of the conditions studied here.

Contrast 4: HO-PF versus HO-PC. The main effect of Contrast 4 was significant (F} 144 =9.98,
p <.005) though trivially small (n? = .0002). Whereas the average bias associated with these two
estimators was small, the average of the HO-PC estimator (M = .001, SD = .091) was slightly less
positively biased than the average of the HO-PF estimator (M =.003, SD = .088). However, not
only was the effect size for this main effect trivially small, but it was also moderated by a significant
interaction of Contrast 4 by the type of general factor loading pattern (F3 44 =7.29, p <.001;
n* =.0004). Although this interaction itself was associated with a trivially small effect size, the
interaction resulted from inconsistency across the general factor loading pattern conditions in terms
of whether the HO-PF or HO-PC approaches were less biased. That is, the interaction resulted from
the HO-PF estimator being nonsignificantly more positively biased in the general factor absent con-
dition (HO-PF: M =.087, HO-PC: M =.086) but nonsignificantly less negatively biased in the
weak higher order loadings (HO-PF: M = —.023, HO-PC: M = —.025) and strong higher order
loadings (HO-PF: M = —.065, HO-PC: M = —.074) conditions and nonsignificantly less positively
biased in the mixed higher order loadings condition (HO-PF: M = .014, HO-PC: M = .015). There
were no other significant effects involving Contrast 4.

To summarize the results for contrast 4, although there were significant differences in bias
between the HO-PC and HO-PF estimators when averaged across all conditions, the magnitude of
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this difference was trivially small, and the trivially small differences in bias between them were
not consistent across the types of general factor loading patterns. Most important, both estimators
performed well in all of the conditions studied here.

Contrast 5: HO-CF versus Hi-CF. The main effect of Contrast 5 was significant (F; 44 = 75.64,
p <.001) though very small (* = .06), indicating that, even though the average bias associated with
both estimators was reasonably small, the Hi-CF estimator (M = .020, SD = .100) was slightly less
positively biased than the HO-CF estimator (M = .068, SD = .098) when aggregated across all con-
ditions. Not only was this main effect associated with a very small effect size, but it was also moder-
ated by a significant interaction of Contrast 5 by the type of general factor loading pattern
(F3,144 = 16.72, p <.001; n* = .04). This interaction resulted from the HO-CF estimator being signif-
icantly more positively biased in the general factor absent (HO-CF: M = .163, Hi-CF: M = .079) and
mixed higher order loadings (HO-CF: M = .078, Hi-CF: M = .065) conditions but significantly less
biased in the weak higher order loadings (HO-CF: M = .032, Hi-CF: M = —.061) and strong higher
order loadings (HO-CF: M = .001, Hi-CF: M = —.006) conditions. Finally, the interaction of Contrast
5 x the type of general factor loading pattern times the sample size was significant (F3 14 =3.11,
p <.05; n* =.007) but was associated with such a trivially small effect size that its practical signifi-
cance is highly questionable and will not be discussed further. There were no other significant effects
involving Contrast 5.

To summarize the results for Contrast 5, although there were significant differences between
the HO-CF and Hi-CF estimators on average, the magnitude of this difference was very small, and
the differences in bias were not consistent across the general factor loading pattern conditions.
Moreover, both estimators performed well in most of the conditions studied here.

Efficiency. Table 2 shows that both alpha and the four putatively accurate methods were associ-
ated with relatively small standard deviations in almost every condition. In contrast, the first PF
and first PC methods were associated with large standard deviations in the general factor absent
condition and also tended to have somewhat elevated standard deviations in the weak higher order
loadings condition.

Are the large standard deviations in the general factor absent condition due to random sam-
pling error or actual variation? The results presented thus far are consistent with the predictions
that the HO-PF, HO-PC, HO-CF, and Hi-CF methods would outperform alpha and the first PC and
first PF methods. However, the large standard deviations observed for the first PC and first PF
methods in the general factor absent condition complicate the interpretation of the results. Given
the relatively small number of replications per condition, it is difficult to know whether these large
standard deviations are due to random sampling error or actual variation. To more conclusively
resolve this issue, more replications for the general factor absent condition were conducted. Fifty
simulated samples were created within each of the four conditions resulting from the 2 x 2 cross-
ing of sample size (n: 100 vs. 200) and scale length (k, 12 vs. 20); thus, a total of an additional 200
artificial data sets in the general factor absent condition were created. In addition to estimating wj,
using the first PF and first PC methods, for comparison purposes, w;, was also estimated using
the putatively accurate method with the largest standard deviation in the general factor absent
condition—the HO-CF method—and alpha for each of these data sets.

Again, the results were collapsed across the two different levels of sample size as all effects
involving sample size were trivially small (n*<.002). Compared with alpha (k=12:SD=.067;
k=20:SD=.037) and the HO-CF (k=12:5D=.113; k=20:SD=.107) method, the standard
deviations associated with the first PF method (k=12:5SD=.162;k=20: SD=.187) were moder-
ately large, and those associated with the first PC method (k=12: SD=.273; k=20, SD=.260)
were very large. This evidence strongly suggests that the large standard deviations shown in Table 2
for the first PF and especially for the first PC methods reflect actual variation rather than random
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sampling error. (To save space, the mean difference scores for the four methods of estimating wj, in
these simulations and the results of the inferential statistical comparing the methods in terms of their
bias are not reported here but are available upon request from Richard E. Zinbarg.)

Do the results generalize beyond the case of four equal-sized group factors with perfectly
simple structure? Additional limitations of the results presented thus far are that it is not clear
(a) if they hold only in the case of four group factors and (b) if they hold only in the case of scales
with perfectly simple and symmetric structure. As noted above, to begin to address these issues,
some additional simulations were conducted based on the structure of the ASI (Reiss et al., 1986).
Ten simulated samples were created within each of the four conditions resulting from the 2 x 2
crossing of sample size (n: 50 vs. 200) and type of general factor loading pattern (relatively weak
vs. relatively strong); thus, a total of an additional 40 artificial data sets were created based on
the structure of the ASI. In all conditions, the models used to generate the artificial data sets were
created by assigning indicators their standard deviations from Zinbarg et al.’s (1997) Table 1
and their standardized group factor loadings from Zinbarg et al.’s Table 2, including cross-
loadings that were greater than .15. This resulted in 11 indicators loading on only one of the
three group factors, four indicators having a cross-loading on a second group factor, and one
item loading on all three group factors. In the relatively strong general factor loading condition,
indicators were assigned their standardized general factor loadings from Zinbarg et al.’s Table 2.
This resulted in an average standardized general factor loading of .49(SD = .13). In the relatively
weak general factor loading condition, the standardized general factor loadings were reduced by an
average of .35, such that the average standardized general factor loading equaled .14(SD = .05).

wy, estimates from all seven methods (first PF, first PC, HO-PF, HO-PC, HO-CF, Hi-CF, and
coefficient alpha) for each sample were again compared to the population w,, value by subtracting
the population value from each of the estimates. For these simulations, the dimensionality of the
estimated models equaled three for the higher order EFA, PCA, and CFA models and four for the
hierarchical CFAs. Table 3 presents the population values of w, and the mean difference scores
for the seven methods of estimating w;, across the two types of structures and two levels of sample
size in the set of simulations based on the structure of the ASI. The repeated-measure factor of
estimate type was again decomposed into the set of five planned contrasts described above.

Contrast 1: The four putatively accurate methods versus the three putatively inaccurate
methods. The main effect of Contrast 1 was significant (F; 35 = 1041.60, p <.001;n* =.68),
indicating that the average of the four putatively accurate methods was more accurate (less posi-
tively biased) than the average of the three putatively inaccurate methods when aggregated
across all conditions (M =.022, SD=.115 vs. M =.441, SD =.172). Importantly, although
this main effect was moderated by two interactions (discussed below), the average of the four
putatively accurate methods was more accurate (less positively biased) than the average of the
three putatively inaccurate methods in every condition.

The two-way interaction of Contrast 1 X the type of general factor loading pattern (F} 35 = 70.30,
p <.001, n? =.05) and the three-way interaction of Contrast 1 x the type of general factor loading
pattern times the sample size interaction (F) 3 = 5.18, p <.05; n> = .004) were significant. The sig-
nificant interaction of Contrast 1 x the type of general factor loading pattern resulted from the type of
general factor loading pattern having a greater effect on the putatively inaccurate methods (1* = .89)
than on the putatively accurate methods (> =.21), with the putatively inaccurate methods being
even more positively biased with a weak general factor (M = .60) than with a relatively strong gen-
eral factor (M = .28). The three-way interaction of Contrast 1 x the type of general factor loading
pattern times the sample size was associated with such a trivially small effect size that its practical
significance is highly questionable and will not be discussed further. No other effects involving
Contrast 1 were significant.
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Table 3

Mean Differences Between Estimated and Population Values of w,:
Simulations Based on the Anxiety Sensitivity Index

n N o First PF First PC HO-PF HO-PC HO-CF Hi-CF
Weak Ag
50 127 .559 521 715 130 120 118 —.053
(.049) (.109) (.148) (.153) (.140) (.244) (.096)
200 127 .529 .503 780 127 151 048 —.050
(.031) (.064) (.087) (.121) (.122) (.142) (.056)
Strong Ag
50 .643 231 244 343 —.038 —.072 —.015 —.226
(.026) (.032) (.020) (.114) (.107) (.142) (:210)
200 .643 252 259 352 .073 .050 076 —.082
(.007) (.007) (.003) (.065) (.057) (.061) (.086)
.393 382 .548 .073 .062 057 —.103
(.156) (.146) (.220) (.132) (.138) (.162) (.142)

Note. n = sample size; w;, = population value of w,, @ = coefficient alpha; first PF = w), estimate based on the
first unrotated principal factor; first PC = w, estimate based on the first unrotated principal component;
HO-PF = w,, estimate based on a higher order exploratory factor analysis; HO-PC = w, estimate based on
a higher order principal components analysis; HO-CF = w, estimate based on a higher order confirmatory
factor analysis; Hi-CF = w), estimate based on a hierarchical confirmatory factor analysis; Aspopulation
values of loadings of indicators on a general factor. Standard deviations are in parentheses. As the data were
aggregated across the two levels of sample size, each of the eight conditions resulting from the 2 (k: 12 vs. 20) x 4
(type of general factor loading pattern) displayed in this table contained 20 replications. The bottom two rows
display the results aggregated across all 160 replications.

Contrast 2: First PF and first PC versus alpha. The main effect of Contrast 2 (F) 3, = 82.82,
p <.001, n*> =.04) and the three-way interaction of Contrast 2 x the type of general factor loading
pattern times the sample size (F)3=3.98, p <.05, n* =.002) were significant. The significant
main effect of Contrast 2 resulted from the first PF and first PC being even more biased than alpha
aggregated across all conditions (first PF and first PC: M = .46; alpha: M = .39). The three-way
interaction of Contrast 2 x the type of general factor loading pattern times the sample size was asso-
ciated with such a trivially small effect size that its practical significance is highly questionable and
will not be discussed further. No other effects involving Contrast 2 were significant.

Contrast 3: Exploratory versus confirmatory methods. The main effect of Contrast 3 was signi-
ficant (Fy 36 =27.14, p <.001, n* = .11), indicating that the average of the confirmatory methods
(M = .003) were even less biased than the average of the exploratory methods (M = .132). There
were no other significant effects involving Contrast 3.

Contrast 4: HO-PF versus HO-PC. The interaction of Contrast 4 x the type of general factor
loading pattern was significant (F) 3 = 6.55, p <.05) though trivially small (n?=.007). There
were no other significant effects involving Contrast 4.

Contrast 5: HO-CF versus Hi-CF. The main effect of Contrast 5 was significant
(F136=230.18, p <.001, n* = .22), indicating that, even though the average bias associated with
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both estimators was reasonably small, the Hi-CF estimator (M = —.10, SD = .14) tended to be
negatively biased, whereas the HO-CF estimator (M =.057, SD = .16) tended to be positively
biased. There were no other significant effects involving Contrast 5.

To summarize the results from Contrasts 1 through 5 for the simulations based on the structure
of the ASI, perhaps the most important result was that the four putatively accurate methods were
again more accurate (less positively biased) and more stable across general factor loading patterns
than the three putatively inaccurate methods. In addition, on average, the first PF and first PC
methods were even more positively biased than alpha. There were also some differences among
the four putatively accurate methods. Thus, the HO-CF and Hi-CF methods were even more accu-
rate (less positively biased) on average than the HO-PF and HO-PC methods, and the HO-CF
method tended to be slightly positively biased, whereas the Hi-CF tended to be slightly negatively
biased. However, it is important to note that the HO-PF, HO-PC, HO-CF, and Hi-CF methods all
performed reasonably well in the ASI simulations.

Efficiency. Table 3 shows that alpha was associated with relatively small standard deviations in
each of the four conditions included in the simulations based on the structure of the ASI. In con-
trast, the putatively accurate CFA methods were associated with large standard deviations in the
n =50 condition. In addition, the first PF, first PC, HO-PF, and HO-PC also tended to have some-
what elevated standard deviations in the n = 50 condition (especially when also in the weak higher
order loadings condition).

Discussion

The predictions that the HO-PF, HO-PC, HO-CF, and Hi-CF methods of estimating w;, would
perform better than coefficient alpha and the first PF and first PC methods received strong support.
In every single condition studied here, the HO-PF, HO-PC, HO-CF, and Hi-CF methods of estimat-
ing wj;, were more accurate than alpha and the first PF and first PC methods. Moreover, with a few
exceptions, the HO-PF, HO-PC, HO-CF, and Hi-CF methods all performed well (within .10 of the
population value of wj,, on average) to very well (within .05 of the population value of w),, on aver-
age) in terms of bias. The HO-PF, HO-PC, HO-CF, and Hi-CF methods were also reasonably effi-
cient in almost every condition, except the n = 50 condition, in the simulations based on the ASI in
which the CFA methods were associated with especially large standard deviations. It is also impor-
tant to note that (a) differences in the size and variance of the general factor loadings, (b) variation in
sample size ranging from 50 to 200, (c) increasing scale length from 12 to 20 indicators, (d) whether
there were four group factors present versus three, and (e) the presence versus absence of item cross-
loadings by and large had trivial effects on the performance of the HO-PF, HO-PC, HO-CF, and
Hi-CF methods of estimating wj,. Although the HO-PF, HO-PC, HO-CF, and Hi-CF methods tended
to outperform alpha and the first PF and first PC methods, even with sample sizes of 50 in the simula-
tions based on the structure of the ASI, their performance did deteriorate somewhat (especially in
terms of efficiency), suggesting caution in their use and interpretation with such small sample sizes.

Although it is reasonable to ask whether there is a best method for estimating w; among these four
methods, any differences that did emerge among them in terms of both bias and efficiency tended to be
quite small. Moreover, these differences were not consistent across conditions as each of the main
effects (exploratory vs. confirmatory, HO-PF vs. HO-PC, and HO-CF vs. Hi-CF) involved was moder-
ated by interactions in which the results reversed from one condition to the next in terms of which
method was even less biased than another. Furthermore, the estimates derived from these four methods
were almost perfectly correlated with each other and the population values of @, . Thus, none of these
four methods is recommended over the other three at this time on empirical grounds. However, it seems
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reasonable to argue that the HO-PF, HO-CF, and Hi-CF methods should be preferred over the HO-PC
method on the grounds that the theoretical model underlying PCA analysis is inconsistent with the
factor-analytic model underlying w), . Fortunately, the results suggest that the accuracy of estimating wy,
will not suffer when researchers who do not share this preference use the HO-PC method instead.

The use of the two CFA methods (HO-CF and Hi-CF) over the accurate EFA method (HO-PF)
is recommended whenever the investigator has clear theoretical or empirical expectations regard-
ing the number of group factors to include in the measurement model and the pattern of loadings
of the indicators on the common factors. The advantage of the CFA methods over the EFA method
is that in the process of fitting one’s CFA model to obtain the parameter estimates necessary to cal-
culate wy,, one can (and should) test the assumptions required for the derivation of w;,. However,
the results suggest that when investigators do not have clear expectations regarding the number of
factors and/or the pattern of the loadings of the indicators on the common factors and therefore use
EFA rather than CFA, the accuracy of estimating ), does not have to suffer in the multidimen-
sional case as long as they use the HO-PF method rather than the first PF method.

A recommendation that should be heeded, regardless of the method chosen to estimate w),, is to
always examine the pattern of the estimated general factor loadings prior to estimating ;. Such
an examination constitutes an informal test of the assumption that there is a latent variable com-
mon to all of the scale’s indicators that can be conducted even in the context of EFA. If the load-
ings were salient for only a relatively small subset of the indicators, this would suggest that there is
no true general factor underlying the covariance matrix. Just such an informal assumption test
would have afforded a great deal of protection against the possibility of misinterpreting the mis-
leading wj, estimates occasionally produced in the simulations reported here. For example, Tables
4 and 5 show the “general” factor loadings from the HO-CF solutions taken from the eight sam-
ples in the general factor absent condition that produced w; estimates of .28 or higher. The pattern
of loadings on the “general” factor in all but the last of these cases was clearly representing one of
the group factors and should be interpreted as evidence that there was no true general factor and
that w;, should therefore be set to equal 0.

It is also worth noting that the results provide yet another demonstration of the well-
documented problem with coefficient alpha as an estimate of the proportion of scale variance due
to a general factor. In each of the conditions studied here, alpha was a highly positively biased esti-
mator of w,. The first PC and first PF methods of estimating w, share coefficient alpha’s limita-
tions in this regard. In fact, the first PC and first PF methods were even somewhat more positively
biased than alpha in these simulations whenever a general factor was present, although they were
less positively biased than alpha when a general factor was absent. In addition, the bias associated
with alpha did increase with scale length as expected. The use of any of these three methods is not
recommended for estimating w;, when group factors are present, as was the case in each of the
simulations studied here.

The conclusion that alpha provides a highly positively biased estimate of w, for multidimen-
sional data might appear to conflict with the large literature demonstrating that alpha tends to
underestimate reliability. The key to understanding this seeming contradiction lies in the distinc-
tion between a general factor and group factors made within the hierarchical factor model
expressed in equation (1). Maximal reliability, stratified alpha, and related coefficients—such as
McDonald’s (1985, 1999) omega expressed equivalently by either equation (4) or (6)—are related
to the proportion of scale variance associated with all common factors, including not only the gen-
eral factor (if one is present) but also the group factors. As Cronbach (1951) noted, alpha tends to
fall somewhere in between the proportion of scale variance due to a general factor and the propor-
tion due to all common factors (i.e., alpha tends to overestimate the former while underestimating
the latter).
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Table 4

Sample General Factor Loading Patterns From Higher Order Confirmatory Factor Model Solutions
That Grossly Overestimated w, When No General Factor Was Present With 12 Indicators

Sample

Indicator Sample 3 (n = 100) Sample 4 (n = 100) Sample 9 (n =200) Sample 10 (n =200)

1 —.15 .07 13 .06
2 —.10 0.07 A1 .05
3 —-.12 0.07 12 .06
4 12 0.13 .08 24
5 A1 0.16 .08 21
6 11 0.20 .07 23
7 82 .02 .80 49
8 72 .02 .70 46
9 82 .02 73 52
10 .16 74 .01 17
11 .19 .70 .01 18
12 17 .78 .01 .19
HO-CF .36 .35 .30 28
o S1 .58 .61 .64

Note. n =sample size; HO-CF = sample estimate of w), using the higher order confirmatory factor analysis
method; o = coefficient alpha. Factor loadings > |.30] are listed in boldface.

Relationship to Alternative Studies Demonstrating a Positive Bias in Alpha

Models accounting for error covariances—which bear some similarities to the group factors
considered here—have been considered by Green and Hershberger (2000), Komaroff (1997), and
Raykov (1998a). Moreover, each of these authors has concluded that there are conditions invol-
ving correlated errors in which « has a positive bias. There are some important differences in the
contributions made by these earlier articles and the current article. First, Green and Hershberger,
Komaroff, and Raykov were concerned with the bias in alpha as an estimate of a reliability coeffi-
cient closer in meaning to w rather than as an estimate of w,. Raykov, for example, examined cases
in which a scale measured two separate, but possibly intercorrelated, factors and was interested
in alpha as an estimate of the proportion of variance in scale scores due to both of these factors.
There will be conditions—such as when Raykov’s two factors are uncorrelated, the factor loadings
are heterogeneous, and the error covariances are zero—in which alpha would continue to overesti-
mate wj;, but would underestimate the proportion of variance in scale scores due to both of these
factors that Raykov focuses on. In addition, there are at least two potential advantages of the group
factor approach over the correlated errors approach. The first advantage is conceptual in that if one
allows for correlated errors, it would appear to be difficult to maintain a distinction between com-
mon factors and errors/uniquenesses (for a related discussion, see Green & Hershberger, 2000,
p- 253). The second advantage is that the group factor approach will often be more parsimonious.
That is, one has to estimate ”’("‘2* D paths in the error covariance approach to model the associations
among the m indicators loading on a particular group factor that are modeled via the estimation of
m paths using the group factor approach.
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Table 5

Sample General Factor Loading Patterns From Higher Order Confirmatory Factor Model Solutions
That Grossly Overestimated w;, When No General Factor Was Present With 20 Indicators

Sample

Indicator Sample 3 (n = 100) Sample 4 (n = 100) Sample 9 (n =200) Sample 10 (n =200)

1 .16 11 .14 13
2 .14 12 12 13
3 .16 12 A1 A1
4 15 11 12 12
5 .14 A1 13 12
6 .02 71 .09 18
7 .01 71 .09 19
8 .02 .69 .08 18
9 .01 5 .08 17
10 .02 .65 .09 18
11 .80 21 —.03 37
12 .66 21 —.04 41
13 81 24 —.04 39
14 .67 21 —.03 40
15 71 22 —.03 36
16 .07 —.07 .61 30
17 .08 —.07 .70 30
18 .08 —.07 .67 27
19 .07 —.07 .67 28
20 .06 —.07 73 31
HO-CF .35 40 28 32
o 74 .70 73 78

Note. n =sample size; HO-CF = sample estimate of w, using the higher order confirmatory factor analysis
method; o = coefficient alpha. Factor loadings < |.30| are listed in boldface.

Limitations, Future Directions, and Conclusion

This study has at least three strengths. First, a wide range of methods of estimating w),, are evalu-
ated for multidimensional scales, as are often encountered in practice. Second, w, estimates are
investigated under various levels of a number of conditions, including strength of general factor
loadings, scale length, and sample size. Third, the major findings were replicated in a set of simula-
tions based on the structure of a widely used instrument, suggesting that the generality of the results
is not limited to the four-factor case or to structures demonstrating perfectly simple structures.

However, this study also has limitations. First, only multivariate normal distributions and con-
tinuous indicators are used, whereas nonnormal and/or categorical data are often encountered in
practice. Second, although sample size and the number of indicators were varied, further work
should be done to examine whether larger effects for these variables would emerge if more levels
and more extreme values were used for them.

Third, with the exception of the first PF and first PC methods, all of the EFA, CFA, and PCA
models were correctly specified. That is, the CFA models correctly specified the number of group
factors, and the indicators that should load on the group factors and the HO-PF and HO-PC models
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correctly specified the number of first-order and second-order factors. Further work should be
done to examine the extent to which estimates of wj, are affected by model misspecification such
as underfactoring and overfactoring. Such work should certainly include the case of overfactoring
in the unidimensional situation, which is an important special case given that the unidimensional
situation often represents the ideal of measurement. The first PF and first PC methods would be
expected to perform better in the unidimensional case than in the multidimensional situations stud-
ied here, but it is unclear how much the performance of the HO-PF, HO-PC, HO-CF, and Hi-CF
methods will deteriorate in the unidimensional case due to the effects of overfactoring.

Fourth, point estimation only was considered; no consideration was given to the important topic
of using sample statistics to derive interval estimates for the population value of w,. Although fur-
ther discussion of this topic is beyond the scope of this article, it is important to note that when esti-
mating wy,, good statistical practice would dictate that point estimation should be supplemented by
interval estimation. Certainly, interval estimation of w), is a topic that should be studied in detail in
future investigations. Bootstrapping and analytic techniques similar to thos ‘e described by Raykov
(1998b) and Raykov and Shrout (2002) should also be useful for obtaining a standard error and
confidence interval when estimating w,.

Fifth, all simulations included four or three group factors and therefore do not address a diffi-
culty that arises in the estimation of w, when only two group factors are present. In the two—group
factor case, the higher order portion of any higher order model will be underidentified as there will
be only one observed correlation between the two lower order factors to estimate the two higher
order factor loadings. Thus, further work is needed to examine the extent to which different identi-
fying constraints introduce bias into the process of estimating wj, in the two—group factor case.

Finally, it is important to note that if @, is applied in a mechanical fashion without careful
thought, an investigator might be led to discard a potentially useful item set. For example, imagine
a 20-item, effect-indicator instrument with a factor structure consisting of a very weak general fac-
tor and three group factors that are loaded on by 13, 4, and 3 indicators, respectively. The popula-
tion value of w, would be low in this instance, and the sample estimates for the accurate methods
of estimating w, (e.g., HO-PF, HO-PC, HO-CF, Hi-CF) should be correspondingly low. It is not
difficult to imagine some scale users or developers deciding to abandon the entire item set as
aresult. Such a decision, however, would represent an instance of ““throwing out the baby with the
bath water,” as it is likely that the 13 indicators loading on the first group factor might form a scale
with a more than adequate value of w,. Depending on the size of the loadings, even the four indica-
tors loading on the second group factor might form a scale with an adequate wj,, as might the three
indicators loading on the third group factor. If so, one might be able to derive three reasonable sub-
scales from these 20 indicators, even though a single total score based on all 20 indicators would
be ill advised.

Thus, it is important to keep in mind that a small value of @, merely indicates that the empirical
justification for aggregating across all indicators to derive a single, effect-indicator total score is
weak. Moreover, the proper interpretation of w;, must take into account not only the estimated
value of w;, but also the matrix of factor loadings. When w), estimates are relatively high, one needs
to pay attention to both the general factor loadings (as discussed earlier to protect against the possi-
bility of overestimating w;, when a general factor is not actually present) and the group factor load-
ings (to see if [a] subscale scores might be considered in addition to a total scale score or [b] there
are indicators that might simply be dropped because they do not have a salient loading on either
the general factor or one of the group factors). When w,, estimates are relatively low, one needs to
pay particular attention to the group factor loadings to see if (a) reasonable subscales might be cre-
ated, even though a single total score would not be well justified; (b) some indicators might be
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dropped, leaving a shorter instrument that yields a single, well-justified total score; or (c) addi-
tional indicators are needed to produce an instrument that yields several subscale scores.

In conclusion, four methods of estimating w;, (Hi-CF, HO-PF, HO-PC, and HO-CF) were
identified that clearly outperformed alpha and the first PF and first PF methods. In addition, the accu-
racy of these four methods of estimating w);, was stable across the different general factor loading pat-
terns, with sample sizes ranging from 50 to 200 and scale lengths ranging from 12 to 20 indicators.
Based on theoretical considerations in addition to performance in these simulations, it is recom-
mended that the HO-CF and/or the Hi-CF methods be used to estimate w;, whenever the investigator
has a clear a priori measurement model that can be tested via CFA. When the investigator does not
have a clear a priori measurement model, the HO-PF method is recommended, although the HO-PC
method will probably produce similar results. Regardless of which of these methods an investigator
uses to estimate w),, in practice, the proper interpretation of the implications of ), for scale develop-
ment and use requires an examination of the pattern of group factor loadings. Finally, one should
always assess the reasonableness of the assumption that all of the scale’s indicators measure a latent
variable in common prior to estimating ;. One informal test of this assumption that can be per-
formed in either a CFA or an EFA context is to examine the pattern of estimated general factor
loadings. Whenever possible, this assumption should also be tested formally via the appropriate
use of CFA.

Notes

1. That is, there will be no group factors when the scale is unidimensional. In this case, the vector
of unstandardized general factor loadings is given by the vector of unstandardized loadings on
the single common factor.

2. Itis obvious that ’”(’”T*” > m only when m > 2. What may be less obvious is that even when
m =2, the number of group factor loadings estimated will equal the number of error covar-
iances estimated as a constraint has to be imposed on one of the two group factor loadings for
identification purposes. Thus, the group factor approach will not only usually be more parsi-
monious but will always be at least as parsimonious as an error covariance approach that
models the associations among the m indicators loading on a particular group factor.
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