tion 7: Causal and Counterfactual Reasoning

Chapter 29: Causal Thinking
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afnn thing leads to another. I forget to
e garage door this morning, back my car
door, and splinter it. The actions we per-
use other events — my backing up causes
tering. But events of other kinds — non-
= have their effects, too. With no help
¢, last night’s storm caused a branch to
a tree, putting a hole in my roof.

h-as we might like to forget them, we
eep track of events like these and the
that unite them. Although we might not
edicted these events, we can remem-
reconstruct part of the causal sequences
ey occur. In retelling the events of last
rfor example, we tend to relate the
1 forward causal order, starting, say, at
inning of our trip to Virginia in May
ceeding chronologically. If we want to
n other kinds of events from the same
such as our summer work experiences,
start again at the beginning of the sum-
ing along the events in a parallel causal
(Barsalou 1988). We also remember fic-
tories in terms of the causal changes
mpose their main plot line, remember-
bout events falling on deadend side
basso and Sperry 1985). We sometimes
causal powers to concrete objects as
events, but we can understand this sort
an abbreviation for event causation. If
ed the glass to break that's because one
actions — maybe his dropping it — caused
ing. I'll take event causation as basic in
e on the strength of such paraphrases.

member causes and effects for event
ell as for event tokens. Ramming heavy
nto more fragile ones typically causes
e items damage; repeating phone num-
risor five times typically causes us to
r them for awhile. Negotiating routine
.g., Schank and Abelson 1977), con-

structing explanations (e.g., Lewis 1986), and
making predictions all require memory for causal
relations among event categories. Causal gener-
alities underlie our concepts of natural kinds,
like daisies and diamonds (e.g., Ahn and Kim
2000; Barton and Komatsu 1989; Gelman and
Wellman 1991; Keil 1989; Rehder and Hastie
2001; Rips 1989, 2001) and support our con-
cepts of artifacts like pianos or prisms. Our
knowledge of how beliefs and desires cause
actions in other people props up our own social
activities (e.g., Wellman 1990).

The importance of causality is no news. Nei-
ther are the psychological facts that we attribute
causes to events, remember the causes later, and
reason about them — although, as usual, con-
troversy surrounds the details of these mental
activities. Recently, though, psychologists seem
to be converging on a framework for causal
knowledge, prompted by earlier work in com-
puter science and philosophy. Rhetorical pres-
sure seems to be rising to new levels among
cognitive psychologists working in this area:
For example, “until recently no one has been
able to frame the problem [of causality]; the
discussion of causality was largely based on a
framework developed in the eighteenth cen-
tury. But that's changed. Great new ideas about
how to represent causal systems and how to
learn and reason about them have been devel-
oped by philosophers, statisticians, and com-
puter scientists” (Sloman 2005: vii). And at a
psychological level, “we argue that these kinds
of representations [of children’s knowledge of
causal structure] and learning mechanisms can
be perspicuously understood in terms of the
normative mathematical formalism of directed
graphical causal models, more commonly known
as Bayes nets....This formalism provides a
natural way of representing causal structure,
and it provides powerful tools for accurate
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prediction and effective intervention” (Gopnik
et al. 2004: 4).

It's a little unfair to catch these authors in
mid rhetorical flight. But the claims for these
formalisms do provoke questions about how
far they take us beyond the simple conclusions
I've already mentioned. Kids and adults learn,
remember, and apply causal facts. As a card-
carrying CP (i.e.,, cognitive psychology) mem-
ber, I believe that kids and adults therefore men-
tally represent these facts. But what's new here
that further illuminates cognitive theorizing?
Here’s the gloomy picture: The new methods
are at heart data-analytic procedures for sum-
marizing or approximating a bunch of correla-
tions. In this respect, they’re a bit like factor
analysis and a whole lot like structural equa-
tion modeling. (If you think it surprising that
psychologists should seize on a statistical pro-
cedure as a model for ordinary causal think-
ing, consider that another prominent theory in
this area is Kelley’s [1967] ANOVA model; see
the section on Causation from Correlation, and
Gigerenzer 1991.) The idea that people use
these methods to induce and represent causal-
ity flies in the face of evidence suggesting that
people aren’t much good at normatively correct
statistical computations of this sort (e.g., Tversky
and Kahneman 1980). Offhand, it's much more
likely that what people have are fragmentary
and error-prone representations of what causes
what, :

The rosier picture is the one about “great new
ideas.”

The jury is still out, and I won't be resolving
this issue here. But sorting out the claims for
the new causal representations highlights some
important questions about the nature of causal
thinking,

How Are Causal Relations Given to Us?

Here’s a sketch of how a CD player works
(according to Macaulay 1988): A motor rotates
a spindle that rotates the CD. As the CD turns,
a laser sends a beam of light through a set of
mirrors and lenses onto the CD’s surface. The
light beam lands on a track composed of reflect-
ing and nonreflecting segments that have been
burned onto the CD. The reflecting segments
bounce the light beam back to a photodiode that
registers a digital “on” signal; the nonreflecting
segments don’t bounce the light back and repre-
sent an “off” signal. The pattern of digital signals
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is then converted into a stereo el
for playback.
You could remember this i
something like the form I just g
unexciting little narrative about
But the new psychological appro
knowledge favors directed graphs
as mental representations — “caysal
environment (Gopnik et al. 2004
contains nodes that stand for even;
the CD player’s motor rotating or
the CD turning or not turning)
links that stand for causal connectj
these events (the sotor rotating cay
turning; the lasét producing a be
mirror-lens assembly focusing th
cause the beam to hit the CD’
course, no one disputes the fact
remember some of the informa ,
grams embody. Although peoplei
confident about their knowledge of
devices like this one (Rozenblit and
they’re nevertheless capable of learn
the CD player’s motor causes the |
What's not so clear is how they:,
cause-effect information, how they p
ponent facts together, and how they
ences from such facts. In this secti
sider the acquisition problem, defers
representation and inference till the
of this chapter. ;

Causation in Perception

You're not likely to get much of th
tion in Figure 1 by passively obs

player, unless you already know abou
of similar devices. But sometimes Yo
impression of cause from seeing obj
Repeated sightings of an event of
lowed by an event of type E, may.p
dence that E; causes E;. Rather wes]
but evidence nonetheless. When w. _
example of the same sequence, we ¢4
causal link. But psychologists somet
there is a more intimate perceptiot
in which an observer directly exper
event causing another. :

PERCEPTUAL STUDIES

In a famous series of dem )
Michotte (1963) rigged a display i
square appeared to move toward a seco
and to stop abruptly when they tougl
second square then began to move wit



Motor rotates

based on text by Macaulay (1988).

of the touching and at a speed similar to
he first square, observers reported the
\are causing the second to move, launch-

,?;, hotte's extensive experiments aimed to
\e purely perceptual conditions that
this immediate impression of causality,
¢'s a paradoxical quality to his efforts.
square in the display doesn’t actu-
e the second to move. The displays
2-D projections of simple geometrical
ose movements could be carefully con-
chind the scenes. (In those days before

using striped disks rotating behind slits
pairs of moving slide projectors.) The
therefore not to determine when peo-
ctly detect causal relations in their envi-
¢ but instead to uncover the cues that
m to report causality.? Michotte him-
usses a number of situations in which
report one event causing another, even
the interaction is physically unlikely or
ble. In one such case, a square A moves
1m/s and comes into contact with another
B, which is already moving at 15 cm/s. If
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Figure 1. A directed graph representing the operation of a CD player,

A comes to a halt and B moves off at a slower pace
than before (7.5 cm/s), observers report a causal
effect. “Such cases are particularly interesting in
that they show that causal impressions arise as
soon as the psychological conditions of struc-
tural organization are fulfilled, and indeed that
they can arise even in situations where we know
from past experience that a causal impression
is a downright impossibility” (Michotte 1963:
71). Michotte’s project attempted to explain
these causal impressions in noncausal terms: His
descriptions of the crucial stimulus conditions
don’t presuppose one object causally influencing
another. He believed that people’s impression
of causality arises as their perceptual systems
try to resolve a conflict (e.g., in the launching
event) between the initial view of the first square
moving and the second square stationary and
the final view of the first square stationary and
the second moving. The resolution is to see the
movement of the first object extending to the

. second, which Michotte called “ampliation of

the movement” (which, I hope, sounds better in
French). '
Michotte (1963: 351-352) believed that this

resoltition “enables us to understand why, when
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such a structure is established, participants can
communicate adequately what they perceive
only by saying that they see the [initially moving]
object make the second go forward.” Why? The
obvious answer would be that this perceptual
situation is one that real objects produce when
they undergo causal interactions. The resolution
that takes place in the experimental displays
reminds the observers, perhaps unconsciously,
of what happens when they view causal com-
ings and goings in the ordinary environment, and
they therefore interpret it the same way. But this
answer is one Michotte rejects, since he consis-
tently denies that the launching effect is due
to acquired knowledge. This is why physically
impossible cases, like the one described in the
previous paragraph, are important to him: They
seem to rule out the possibility that observers
are making an inference to causality based on
experience,

The easiest way to understand Michotte’s
theory (though not in terms he used) is as
the claim that people have a built-in causal-
ity detector that is triggered by the conditions
he attempted to describe. Since the detector is
presumably innate, its operations don’t depend
on learning from Previous experience. Moreover,
the detector responds reliably but not perfectly.
Toads dart at insects in their visual fields but
can be tricked into darting at moving black-on-
white or white-on-black spots, according to the
old ethology chestnut (e.g, Ewert 1974). In the
same way, whenever the movement of an object
“extends” to a second, people receive the impres-
sion of causality, whether or not the first object
actually causes the second to move,

But this approach, like some moving spots,
is hard to swallow. Although Michotte stressed
that observers spontaneously report the events
in causal language — for example, that “the first
square pushed the second” - the impression of
causality doesn’t seem as immediate or auto-
matic as typical perceptual illusions. We can’t
help but see the apparent difference in line
length in the Muller-Lyer illusion or the appar-
ently bent lines in the Poggendorf and Hering
figures (see, e.g., Gregory 1978, for illustrations
of these). And toads, so far as we know, can’t
help unleash their tongues at moving specks. But
Michotte’s demonstrationg allow more interpre-
tative leeway.

Suppose Michotte was right that people pos-
sess an innate detector of some sort that’s broad
enough to be triggered by the displays his partic-
ipants report as causal. The detector, of course,
produces false positive responses to some dis-
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the spectrum). So what the
not (all or only) causal interact
something more like abrupt
continuities in the speed of

at the point at which they ;
include both the normal laty
the causally unlikely or imp
as slowing on impact. Nor

take the output of the dete
the presence of a causal in
case of Michotte’s demos, for
clude that no real causal inter:
between the squares, at least

aware of what’s going on behin
mirrors. The issue of whether y

opposite directions, the claim
causality is unstable,

Here’s an analogy that mayh
issue, People viewing a cartoon ¢
in the Disney film Cars, imme
cartoon as a car (and report it s
the fact that it is physically impo
talk, to possess eyes and mouths,
the flexible way that cartoon cars
don’t recommend it, you could
your career pinning down the p
(e-g., length-to-width ratios) wit
impression of carness occurs, B
enough evolutionary time since th
cars in the 19th century for us
innate car detectors. The fact the
ately recognize cartoons as cars @
possess physically impossible prop
evidence for innate car percepti

by launching displays.

Causality is an inherently abstr
one that holds not only between®
ical objects but also between sub



rete perceived information.® There’s
ay to defeat the idea that “when we
these objects with the utmost atten-
find only that the one body approaches
-:and the motion of it precedes that of
without any sensible interval” (Hume

TION BETWEEN PERCEIVED

RRED CAUSALITY

recent evidence suggests that people’s
ts about perceived causality are inde-
of some of the inferences they make
vse. Investigators have taken these dis-
5 to suggest that Michotte (1963) was
t perceived causality is an innate mod-
such study (Roser, Fugelsang, Dunbar,
, and Gazzaniga 2005) employed two
n patients, presenting causal tasks to
rits’ right or left hemispheres. In one
patients saw Michotte-type launching
hat varied in the spatial gap between
objects at the moment the second
.gan to move and, also, the time-delay
the point at which the first object
and the second object began moving.
tial gaps and time delays tend to weaken
ession of perceived causality in normal
nts. And so they did in the split-brain
but with an important qualification.
ents had to choose whether the first
ppeared to cause the second to move
er the second object moved on its own,
positive “cause” judgments were more
when there was no delay and no gap.
erence appeared, however, only when
nts’ right hemisphere processed the dis-
-hemisphere processing showed no dif-
etween conditions. A second task asked
e split-brain patients to solve a prob-
hich they had to use the statistical co-
ce between visually presented events to
hich of two switches caused a light to
. Patients were more often correct in
when the displays presented the infor-
o their left hemispheres than when they
d it to their right hemispheres.

brain patients may process causal
ation in atypical ways, but investigators
ound similar dissociations with normal
pants. Schlottmann and Shanks (1992,
ment 2) varied the temporal gap within
ing events (as in Roser et al. 2005) and
ie contingency that existed across trials
en whether the first object moved and
er the second object moved. On some
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series of trials, the first object’s moving was
necessary and sufficient for the second object
to move; on others, the second object could
move independently of the first. Participants
made two types of judgments on separate trials
within these series: how convincing a particular
collision appeared and whether the collisions
were necessary for the second object to move.
Schlottmann and Shanks found an effect of
delay but no effect of contingency on judg-
ments of the display’s convincingness. Judg-
ments of necessity, however, showed a big effect
of contingency and a much smaller effect of
delay.

These dissociations suggest — what should
become clear in the course of this chapter —
that causal thinking is not of one piece. Some
causal judgments depend vitally on detailed per-
ceptual processing, while others depend more
heavily on schemas, rules, probabilities, and
other higher-order factors. What's not so clear
is whether the dissociations also clinch the case
for a perceptual causality detector. The right
hemispheres of Roser et al.’s (2005) split-brain
patients could assess the quality of launching
events even though they were unable to evalu-
ate the impact of statistical independencies. But .
this leaves a lot of room for the influence of
other sorts of inference or association on judg-
ments about launching. Suppose, for example,
that launching judgments depend on whether
observers are reminded of real-world interac-
tions of similar objects. Unless the right hemi-
sphere is unable to process these reminders,
inference could still influence decisions about
launchings. Similarly, Schlottmann and Shanks’s
(1992) finding shows that observers can ignore
long-run probabilities in assessing the convinc-
ingness of a particular collision, but not that
they ignore prior knowledge of analogous phys-
ical interactions.

STUDIES OF INFANTS

Developmental studies might also yield evi-
dence relevant to Michotte’s claim, since if the
ability to recognize cause is innate, we should
find infants able to discriminate causal from non-
causal situations. The evidence here suggests
that by about six or seven months, infants are sur-
prised by events that violate certain causal reg-
ularities (Kotovsky and Baillargeon 2000; Leslie
1984; Leslie and Keeble 1987; Oakes 1994). In
one such study, for example, Kotovsky and Bail-
largeon first showed seven-month-olds static dis-
plays containing a cylinder and a toy bug, either
with a thin barrier separating them (no-contact
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No-contact Condition
Familiarization Displays

Test Event

Contact Condition
Familiarization Displays

Figure 2. Familiarization and test conditions from Kotovsky and Baillargeon (200¢

condition) or with a partial barrier that did
not separate them (contact condition). Figure 2
displays these two conditions at the left and
right, respectively. A screen then hid the posi-
tion that contained the barrier or partial barrier.
In the experiment’s test phase, the infants saw
the cylinder roll down a ramp and go behind
the screen, as shown at the bottom of Figure 2.
The screen hid what would be the point of
impact, but if the bug moved as if the cylinder
had struck it, the infants looked longer in the
no-contact than in the contact condition. If the
bug failed to move, infants showed the opposite
pattern of looking.

Atseven months,* then, infants appear to dis-
criminate some cases in which simple launch-
ing events will and won’t occur, but should
we take this as evidence for innate perception
of causality? Unfortunately, there seems to be
no evidence that would allows us to compare
directly the class of interactions that Michotte’s
participants report as causal with the class that
infants react to. It would be useful to know,
in particular, whether the “impossible” displays
that Michotte’s observers report as causal are
also ones to which infants give special attention.
What we do know, however, is that infants take
longer than seven months to recognize causal
interactions even slightly more complex than
simple launching. For example, at seven months

they fail to understand situations in
object causes another to move in 3
than dead ahead, situations that adu
causal (Oakes, 1994).

If the classes of interactions that
infants perceive as causal are not &
this weakens the evidence for innaf
perception of causality. You could m
the perceptual impression of causal
with experience from an innate sta
of very simple causal percepts, such
launchings, but this opens the door £
to the very idea of directly perceivi
learning can influence what we see
interaction, then it seems likely tha
factors — beliefs and expectations =
these impressions. Perhaps the learni
tion is extremely local and low le
not — if observers’ impressions of ca
because of general learning mechani
this suggests that the impressions
ter of inference rather than direct
Much the same can be said about ev
seven-month-olds’ reaction to launc
depends on whether the objects ar
or inanimate (Kotovsky and Baillarg
The animacy distinction presumably
higher-level factors, not just on the spat
ral parameters Michotte isolated (se:
Carey 2006 for a review).



irse, uncertainty about the evidence
perception of causality needn’t affect
that the concept of causality is innate
section on causal primitives later in
). Children may have such a con-
be initially unsure exactly what sorts
tual data provide evidence it applies.
nonperceptual, as well as perceptual,
trigger such a concept; in fact, most
f causality in psychology have avoided
e to specifically perceptual informa-
se theories take seriously the other
Hume's (1739/1967) view, trying to
or judgments of causality in terms of
ience of the co-occurrence of events.
ent research shed any light on this

n from Correlation

can literally perceive causality in some
we have to resort to indirect meth-
vers. A careful look at a CD player’s
n’t disclose the causal link between the
pattern of light and the transmission
signals at the bottom of Figure 1. We
he reflected light and hear the result-
. but we don’t have perceptual access
inection between them. Similarly, we
atmospheric pressure influencing the
int of a liquid or a virus producing a
om or other people’s beliefs motivating
ns. Experiments in science would be
ary if all we had to do to isolate a causal
m is look.

sts, of course, aren’t the only ones in
dden causal facts. We need to predict
s will behave if we want to enlist them
a sofa. We need to know what buttons
we want to make a cell phone call or
opera broadcast or adjust the drying
¢ep from scorching our socks. We need
which foods are likely to trigger our
hich windows are best for which plants,
etings will produce another greeting
unned silence or a slap in the face. We
times rely on experts to tell us about
n causes. Allergists are often good on
botanists on plants, and Miss Manners
rs. But sometimes we have to proceed
wn, and the question is how ordinary
pe with the task of recognizing causal
ips when they can’t look them up. The
at psychologists have usually given to
tion is that people operate from bot-
sbserving the temporal co-occurrence
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of events and making an inductive inference to a
causal connection. They might passively register
the presence or absence of a potential cause and
its effects or they may actively intervene, press-
ing some buttons to see what happens. In either
case, they decide whether a cause-effect link is
present on the basis of these results. This section
considers the more passive route to discovering
causes, and the next section looks at the more
active one.

CAUSE, CONTRAST, CORRELATION

If we suspect event type C causes event type
E, we should expect to find E present when C is
present and E absent when C is absent. This cor-
relation might not be inevitable even if C really
is a cause of E. Perhaps E has an alternative cause
C’; so E could appear without C. Or perhaps C is
only a contributing cause, requiring C” in order
to produce E; then C-could appear without E.
But if we can sidestep these possibilities or are
willing to define cause in a way that eliminates
them, then a correlation between C and E may
provide evidence of a causal relation. Codifying
this idea, Mill (1874) proposed a series of well-
known rules or canons for isolating the cause (or
effect) of a phenomenon. The best known of
these canons are the method of agreement and
the method of difference. Suppose you’re look-
ing for the cause of event type E. To proceed
by the method of agreement, you should find a
set of situations in which E occurs. If cause C
also occurs in all these situations but no other
potential cause does, then C causes E. To use
the method of difference, which Mill regarded as
more definitive, you should find two situations
that hold constant all but one potential cause, C,
of E. If E is present when C is present, and E is
absent when C is absent, then C causes E.

Psychologists have mostly followed Mill’'s
canons in their textbooks and courses on sci-
entific methods.> If you're a victim of one of
those courses, you won’t find it surprising that
psychological theories of how nonscientists go
about determining cause-effect relations reflect
the same notions:

The inference as to where to locate the dispo-
sitional properties responsible for the effect
is made by interpreting the raw data...in
the context of subsidiary information from
experiment-like variations of conditions. A
ndive version of J. S. Mills’ method of dif-
ference provides the basic analytic tool. The
effect is attributed to that condition which is
present when the effect is present and which
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Table 1: Two Contrasts for Assessing the Presence of a Causal
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Relation
a.
This Occasion Other Occasions
Calvin  Other People Calvin  Other People
tango 1 0 1 0
other dances 1 0 1 0
b.
This Occasion Other Occasions
Calvin ~ Other People Calvin  Other People
tango 1 1 1 1
other dances 0 0 0 0

I's indicate that a person likes a particular dance on a given occasion;

0’s indicate not liking to dance.

is absent when the effect is absent. (Kelley
1967: 194)

As an example (similar to one from Cheng and
Novick 1990), suppose you know that Calvin
danced the tango last Thursday. To find out
the cause of this event, you need to exam-
ine potential causes that the outcome suggests:
Maybe it was a disposition of Calvin’s, maybe
it was the tango, maybe it was something about
this particular occasion. To figure out which of
these potential causes was at work, you men-
tally design a study in which the three causes
are factors. The design will look something like
what’s in Table 1. The 1’s in the cells stand for
somebody dancing on a particular occasion, and
the O’s stand not dancing. If the pattern of data
looks like what's in Table 1a, we have an effect
for the person but no effects for either the occa-
sion or the type of dance; so we might conclude
that the reason Calvin danced the tango on this
occasion is that he just likes dancing. By contrast,
if the data come out in the form of Table 1b,
where Calvin and others don’t do other kinds
of dancing, but everyone dances the tango, we
might conclude that it was the tango that caused
Calvin’s dancing,

Kelley’s (1967) ANOVA (analysis of vari-
ance) theory aimed to explain how individuals
determine whether their reaction to an exter
nal object is due to the object itself (e.g., the
tango) or to their own subjective response, and
the theory focused on people, objects, times,
and “modalities” (different ways of interacting
with the entity) as potential factors. Cheng and
Novick (1990, 1992) advocated a somewhat

more flexible approach in whi
to consider a set of potential facto
grounds: “Contrasts are assumed#
for attended dimensions that are
event to be explained” (1990:
ing to this theory, people also
sation relative to a particular
tions, a “focal set,” rather than to
Within these situations, people ¢
effectiveness in terms of the diffe
the probability of the effect wh
cause is present and the probabili
when the same potential cause is

(1) AP = Prob(effect | factor
Prob(effect | ~factor),

where Prob(effect | factor) is th
probability of the effect given the pr
potential causal factor and Prob(e
is the conditional probability of
the absence of the same factor. Wh;
ence, AP, is positive, the factor is
cause of the effect; when it’s ne
tor is an inhibitory cause; and wt
the factor is not a cause. Cheng a
distinguish causes (contributory o
from “enabling conditions” ~ factor
is undefined within the focal set
(because they are constantly pres
stantly absent) but that have nonzer
other focal set.

We can illustrate some of these
in the Table 1 results. In Table:
for Calvin versus other people, b
object and occasions factors. So so



contributory cause of his dancing the
4t time, and the tango and the occa-
oncauses. In the Table 1b data, the
ce) factor hasa APof 1, whereas the
occasion factors have AP's of 0; so
auses the event. Reversing the 0’s and
e 1b, so that Calvin and others never
ango but always dance other dances,
e a AP of —1. In this case, the tango is
ry cause. A factor — perhaps, music -
ent in all the situations in the focal set
here would be an enabling condition
out to have a positive AP in a larger
situations in which it was present in
bsent in others. The results in Table 1
one, but the AP measure obviously
to situations in which the effect can
in each cell sometimes but not always.
notions about cause derive from work
tive learning. Creatures learning that,
k often follows a tone are remember-
gency information about the tone and
the pain or fear that the shock creates —
imal lovers, but these aren’t my experi-
A number of researchers have proposed
primitive form of association might pro-
basis for humans’ causal judgments (e.g.,
and Dickinson 1987; Wasserman, Kao,
mme, Katagiri, and Young 1996). Data
dels for such learning suggest that this
may be more complex than a simple cal-
f AP over all trials. In particular, the
ve strength between a specific cue (e.g.,
nd an unconditioned stimulus (shock)
.on the associative strength of other cues
shapes, colors, etc.) that happen to be
The associative strength for a particu-
is smaller, for example, if the environ-
eady contains stronger cues for the same
f these associative theories are correct
for judgments about a specific poten-
e, then such judgments should depend
actions with other potential causes, not
‘main effect” differences like those of the
A model or AP. Evidence for these inter-
in causal judgments appears in a number
es (e.g., Chapman and Robbins 1990;
and Dickinson 1987).6 However, AP-
eories can handle some of these results
ipants compute AP while holding other
ded factors constant (a conditional AP,
heng 1997; Spellman 1996). Also, under
n conditions (e.g., only one potential cause
at), associative theories sometime reduce
> (Chapman and Robbins 1990; Cheng
Because both associative and statistical
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models make use of the same bottom-up fre-
quency information, we consider them together
here (see the section on Power for more on inter-
actions). -

LOTS OF CORRELATIONS
The same textbooks on methodology that
extol Mill’s canons of causal inference also insist
that a correlation between two variables can’t
prove that one causes the other. Because Mill’s
methods, the " ANOVA theory, AP, associative
theories, and their variants all work along corre-
lational lines, how can they provide convincing
evidence for causation?® If these methods yield
a positive result, there’s always the possibility
that some unknown factor confounds the rela-
tion between the identified cause and its effect.
Maybe Calvin’s love of dancing didn’t cause
his dancing the tango Thursday, but instead
the cause was his girlfriend’s insistence that he
dance every dance on every occasion (in the
Table la example). If these methods yield a
negative result for some putative cause, there’s
always the possibility that some unknown factor
is suppressing the first. The tango’s special allure
might surface if Calvin and his girlfriend hadn’t
crowded other couples off the dance floor. If
we can't identify a cause (due to possible con-
founding) and we can’t eliminate a potential
cause (because of possible suppression), how can
we make any progress with these correlational
methods? Of course, the ANOVA theory and the
AP theory (unlike Mill's methods) are intended
as models of ordinary people’s causal reckon-
ing, and ordinary people may not consider con-
foundings or suppressors. Superstitious behav-
jor may attest to their unconcern about spurious
causes and noncauses, as might the need for the
textbook warnings about these weak inferences.
Even children, however, can reject confoundings
under favorable conditions (Gopnik et al. 2004;
Koslowski 1996: Ch. 6). So we seem to need an
explanation for how people can go beyond cor-.
relation in their search for causes. ~
Although a single contrast or correlation bet-
ween factors may not be convincing evidence,
multiple correlations may sometimes reveal
more about the causal set up. To see why this
is so, let’s go back to the CD diagram in Fig-
ure 1. Both the rotating motor and the laser
beam inflience the final transmission of electri-
cal signals. So we would expect both the rotation
of the motor and the presence of the laser beam
to be correlated with the transmission. The cor-
relation between the motor and the light beam,
however, should be zero, provided no further
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factors outside the diagram influence both of
them. (If there is a power switch, for example,
that controls both the motor and the laser, then,
of course, there will be such a correlation. So
imagine there are separate controls for present
purposes.) Similarly, the diagram predicts that
if we can hold constant the state of some of
the variables in Figure 1, the correlation among
other variables should go to zero. For instance,
although there should be a correlation between
whether the CD is rotating and transmission of
signals, we should be able to break the correla-
tion by observing only those situations in which
the intermediate variable, the light striking the
diode is constant For instance, when light is not
striking the diode, there should be no correla-
tion between the rotating and the transmission.
The causal relations among the different parts
of the diagram put restrictions on what is cor-
related with what. Working backward from the
pattern of correlations, then, we may be able
to discern which causal relations are consistent
with these correlations and which are not. For
example, the presence of a correlation between
the rotation and the light beam would be a rea-
son to think that the causal arrows in Figure 1 are
incorrect. Statistical techniques like path analy-
sis and structural equation modeling exploit sys-
tems of correlations in this way to test theories
about the causal connections (e.g., Asher 1983;
Klem 1995; Loehlin 1992).

There are limits to these methods, however,
that are similar to those we noted in connection
with single correlations (Cliff 1983). In the first
place, there may still be confounding causes that
are not among the factors considered in the anal-
ysis. In the setup of Figure 1, for example, we
should observe a correlation between the light
striking the diode and the transmission of sig-
nals, but there is no guarantee, based on corre-
lations alone, that this is due to the direct effect
of the diode on the signals (as the figure sug-
gests). Rather, the correlation could be due to
the effect of some third, confounding variable on
both the diode and the signal. The same is obvi-
ously true for the rest of the direct connections
that appear in the graph. Each direct connec-
tion is subject to exactly the same uncertainty
about confoundings that we faced with single
correlations. Second, the pattern of correlations
can drastically underdetermine the causal struc-
ture. Consider, for example, a completely arbi-
trary set of correlations among four variables A,
B, C, and D. The causal connections in Figure 3a
(i.e., A has a direct causal effect on B, C, and
D; B has a direct effect on C and D; and C has

a direct effect on D) will be perfe
tent with those correlations, whaté

pen to be. For example, a path analy,
these connections will exacily pred;
trary correlations. Moreover, so will
other twenty-three models in whic
of the variables in this structure is pe
instance, the one in Figure 3b in whie
causes C, B, and A; C directly caus
and B directly causes A. These are
models in path-analysis terminol
always fit the data perfectly. Addit
mation beyond the correlations w

essary to discriminate among thes
sible causal connections (Klem 19
Pearl 2000 for a discussion of M:
lent causal structures).

CAUSAL MECHANISMS AND SCHEMA

To compound these difficul
bottom-up, correlation-to-causati
the causal environment typically
enormous number of factors that c
a given effect. Calvin, the tango,
sion may produce events that ca
ing the tango on Thursday, but the
cover terms that contain many diff
tial causes: They serve as causal &
categories, Not all of Calvin’s dispo,
plausibly cause him to dance, but t
a seemingly unlimited number to
Is the cause his showmanship, his a
musical talents, his religious fervo
of being a wallflower, his fear of
his girlfriend, . ..? Moreover, we ne
people, objects, and occasions, as
noted. Maybe it's his girlfriend
maybe it’s bribery by the DJ, mayb
rays, maybe it’s his therapist’s hyp:
tion, maybe it’s a disease (like St.
and so on. Since there is no end to
ities, there is no way to determin
them whether it is the cause, ma
bottom-up approach completely hop

We should again distinguish the
scientist from the task of describin
causal search. Laypeople may take
only a handful of potential causes an
for a correlation with the effect. Alth
a procedure might not be normatively
may nevertheless be the recipe peopl
everyday life. But even if people use ¢
over a restricted set of factors, an
of their causal reasoning would th
to include an account at how they
restricted set. The factors they test are



and permuted form (b).

to, of course, but what determines
attend to? People’s causal thinking
at explaining some phenomenon,
t needs explaining may be a func-
¢ seems unusual or abnormal within
ontext (Einhorn and Hogarth 1986;
8: Kahneman and Miller 1986). The
11 process itself depends on broadly
factors, such as the explainers’ inter-
¢ of view, the contrast class of expla-
oy have in mind, the intended audi-
e explanation, and the availability of
among others (Brem and Rips 2000;
0; Lewis 1986; van Fraassen 1980).
goes for determining “the cause” of
enon, which is a disguised way of
‘the main cause or most important

ce supports the notion that people’s
causes relies on information other than
n. Ahn, Kalish, Medin, and Gelman
ked participants what kinds of evi-
7 needed to determine the cause of an
the one about Calvin. (Ahn et al. used
stimulus materials from Cheng and
190.) For example, participants had to
n questions that they would like to
red in order to figure out the cause
case) Calvin’s not dancing the tango
ccasion. Ahn et al. predicted that if
ipants were following the ANOVA or
ovick AP theory, they should be seek-
+mation that fills out the rest of the
atrix in Table 1 — the kind of infor-
y could use to compute experimen-
ts or AP. Did other people dance the
Calvin dance other kinds of dances?
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Did Calvin dance the tango on other occasions?
And so forth. What Ahn et al. found, though, is
that participants asked these sorts of questions
only about 10 percent of the time. Instead, par-
ticipants asked what Ahn et al. call “hypothesis-
testing” questions, which were about specific
explanatory factors not explicitly mentioned in
the description of the event. Participants asked
whether Calvin had a sore foot or whether he
ever learned the tango, and about similar sorts of
common-sense causal factors. These hypothesis-
testing questions showed up on approximately
65 percent of trials. Ahn et al. concluded that
when people try to explain an event, they look
for some sort of mechanism or process that could
plausibly cause it. They have aset of these poten-
tial mechanisms available in memory, and they
trot them out when they’re trying to discover a
cause.

People may also infer correlational informa-
tion from their causal beliefs rather than the
other way round. Psychologists have known
since Chapman and Chapman’s (1967; Chap-
man 1967) initial work on illusory correlations
that causal expectancies can affect estimates of
correlations (for reviews, see Alloy and Tabach-
nik 1984; Busem- yer 1991; Nisbett and Ross
1980). For example, both clinicians and laypeo-
ple overestimate the correlation between diag-
nostic categories (e.g., paranoia) and certain test
results (e.g, unusual eye shapes in patients’
drawings). This is probably because the judges’
causal theories dictate a relation between the
category and the result — paranoia causes patients
to be especially aware of the way people look at
them or of their own glances at others — since
the true correlation is negligible.

s
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Similarly, Tversky and Kahneman’s (1980)
experiments on causal schemas show that causal
theories can dictate estimates of conditional
probabilities. Participants in one experiment
were asked to choose among the following
options:

Which of the following events is more
probable?

(a) That a girl has blue eyes if her mother has
blue eyes. :

(b) That a mother has blue eyes if her daugh-
ter has blue eyes.

(c) The two events are equally probable.

The converse conditional probabilities in (a) and
(b) are necessarily equal, according to Bayes
Theorem, provided that the (marginal or uncon-
ditional) probability of being a blue-eyed mother
is the same as being a blue-eyed daughter. (A
follow-up experiment verified that most par
ticipants think this equality holds.) The results
showed that 45 percent of participants cor
rectly chose option (). The remaining partic-
ipants, however, chose (a) much more often
than (b): 42 percent versus 13 percent. Accord-
ing to Tversky and Kahneman’s interpretation,
these judgments are biased by the belief that it’s
the mother who is causally responsible for the
daughter’s eye color rather than the reverse. This
causal asymmetry induces an incorrect impres-
sion of an asymmetry in the conditional proba-
bilities.

Finally, Waldmann and his colleagues have
shown that people’s judgment about a cause can
depend on causal background beliefs, even when
correlational information is constant (Wald-
mann 1996). Consider, for example, the ficti-
tious data in Table 2, which exhibits the relation
between whether certain fruit has been irradi-
ated and the fruit’s quality in two samples, A and
B. Summed over the samples, the quality of fruit
is positively related to irradiation; AP is posi-
tive when irradiation is the factor and quality the
effect. Within each sample, however, the effect
reverses. Both AP’s are negative when calculated
within sample, as shown in the bottom row of
the table. This situation is an example of what’s
known as Simpson’s paradox: When the num-
ber of cases in the cells is unequal, the size and
even the direction of contingency statistics can
depend on how the population is partitioned.?
In Table 2, people should judge irradiation to
be positively related to quality if they base their
decision on the entire sample, but should make

Sample A
Irradiated 16/36
Not irradiated 3/4
AP -.31

The first two rows indicate what
of fruit was good as a function ¢
was irradiated or not and wheth
sample A or sample B. The top
fraction is the number of good £
number is the total number test:
condition. Bottom row shows A
Prob(Good | Irradiation) ~ Probg
Irradiation)] for the entire popul
sample separately. :

the opposite judgment if they
A and B separately. Waldman
(2001: Experiment 1) manipyl
assumptions about the causal i
ple by informing them in os
sample A consisted of one typ
and sample B consisted of a

different investigators. Particip
ditions, however, saw the sam
(distributed as in Table 2) th
sample (A or B) and, for eac

constant for the two conditi
rated irradiation as negatively
when the samples were causal
of fruit) but positively affecti
the samples were irrelevant (
gators).

Given these findings, there
that people construct judgmen
bottom up, except under the
conditions. Naturally, this do
contingencies, associations, an
irrelevant to people’s assessme
the role they play must be a
larger picture.

POWER

As a step toward a more th
of cause, we might analyze o
gencies as due to two compo



- absence of the cause and the ten-
ower of this cause to produce the
ng 1997; Novick and Cheng 2004).
an’t bring about the effect, of course,
present. But even if it is present, the
e co-opted by other causes or may be
 produce the effect in question. Ordi-
an observe whether or not the cause
at least in the types of experiments
en discussing, but the cause’s power
:able. In this vein, Novick and Cheng
) claim that “previous accounts, how-
rely covariational in that they do not
e possible existence of unobservable
ures to arrive at their output. In
theory explicitly incorporates into
procedure the possible existence of
structures: Structures in the world
dependently of one’s observations”
in the original). On this theory, you
1e nature of these distal structures
pecial circumstances. When these
mptions are met, the distal causal
exactly an ANOVA contrast or AP,
much like a normalized AP.
the power of a cause C, suppose first
sent in the environment. Then the
| occur in two cases: {2) C produces
ability p.), or (b) other alternative
ctively designated A, occur in the
nment and produce E (with proba-
\'| C) - pa). Thus, the probability of

present is:

| C)=pc + Prob(A|C)-pa — pc-

we count only once the case in
d A both produce E. When C is
-the alternative causes A can bring

+ Prob(A|C)'pa — Pe-

— [Prob(A | C) — Prob(A | ~C)1p,
1 — Prob(A | C)p, '
1 case in which causes A and

dependently (so that Prob(A|C)=

CAUSAL THINKING 609

Prob(A | ~C) =Prob(A)), then Equation (5) re-
duces to:
AP
1 — Prob(A)p,
~ AP
T 1—-Prob(E| ~C)

(6) pc=

The last expression follows since, by Equa-
tion (3), Prob(E|~C) is equal to Prob(A)-p,
when A and C are independent. The interpre-
tation of (6) may be clearer if you recall that
APis itself equal to Prob(E | C) — Prob(E | ~C).
In other words, p. is roughly the amount that C
contributes to producing E relative to the max-
imal amount that it could contribute. Thus, p,
unlike AP, is immune to ceiling effects - situ-
ations in which E already occurs frequently in
the absence of C — except in the extreme case
in which Prob(E|~C)=1, where p. is unde-
fined. (To see this, suppose Prob(E | C) = .95 and
Prob(E | ~C) =.90. Then AP=.05, a seemingly
small effect for C because both Prob(E | C) and
Prob(E | ~C) are high. But p, = .50, a much
larger effect because of the correction.) The
formulas in (5) and (6) define contributory
causal power, but analogous ones are available
for inhibitory causal power (see Cheng 1997).
Does the power statistic, p,, correspond to
people’s concept of a distal cause, as Novick and
Cheng (2004) claim? Why shouldn’t we con-
sider it just another estimate of the likelihood
that a particular cause will produce an effect -
AP corrected for ceiling effects? The Cheng-
Novick set-up portrays causation as a two-step
affair. If we want to predict whether C causes E,
we need to know both the likelihood that C is
present and also the likelihood that C will pro-
duce E. But granting this framework, we may
have some options in interpreting the latter like-
lihood. One issue might be whether people think
that “distal power” is a probabilistic matter, as
Luhmann and Ahn (2005) argue. Setting aside
subatomic physics, which is outside the ken of
ordinary thinking about ordinary causal inter-
actions, people may believe that causal power
is an all-or-none affair: Something either is a
cause or isn’t; it’s not a cause with power .3
or .6. Of course, there might be reasons why
a potential cause doesn’t run its course, such as
the failure of intermediate steps. For example, a
drunk driver might have caused an accident if his
car hadn’t been equipped with antilock brakes.
But do we want to say that the causal power of
the drunk driving was some number between
0 and 171% There are also cases in which a
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potential cause doesn’t succeed in producing
its effect for reasons that we simply don’t
know. If we're in the dark about why a cause
doesn’t always produce an effect, we might want
to attach a probability to it. As Cheng and
Novick (2005: 703) acknowledge, “A probabilis-
tic causal power need not indicate any violation
of the power PC assumptions even for a rea-
soner who believes in causal determinism. ... A
probabilistic causal power might instead reflect
the reasoner’s imperfect representation of this
cause.” But this isn’t consistent with Novick and
Cheng’s distal causal power idea. Our lack of
knowledge isn’t an intermediate degree of dis-
tal causal power: It's a proximal matter of our
beliefs. Probabilistic beliefs about causes aren’t
beliefs about probabilistic causes.

Novick and Cheng are likely right that peo-
ple believe that there are causes in the world and
that these causes have power to produce certain
effects. What's in question is whether you can
model these powers as probabilities in a way that
doesn’t sacrifice basic intuitions about causal-
ity, which for ordinary events might be nec-
essarily all-or-none (Luhmann and Ahn 2005)
and inherently mechanistic (“intrinsically gener-
ative,” in White’s 2005 terms). It is possible for
power proponents to retreat to the position that
causal power describes an idealized, normatively
correct measure that actual causal judgments
merely approach. After all, distal causal powers,
like distal properties and objects, are the sorts of
things we infer rather than directly apprehend.
However, the causal power formulas in (5) and
(6), and their variants for inhibitory and inter-
active cases, don't necessarily yield normatively
correct estimates. Like other measures of causal
effectiveness ~ main effect contrasts, AP, path
analysis coefficients, and similar measures esti-
mated directly from co-occurrence data — the
power formulas don’t always yield a normatively
correct result. Glymour observes (2001: 87) that
there “is an obvious reason why [the power
method] will not be reliable: unobserved com-
mon causes. We have seen that the estimation
methods [for generative and preventive powers]
are generally insufficient when there are unob-
served common causes at work, and often we
have no idea before we begin inquiry whether
such factors are operating.” If we already know
the structure of the causal environment, we can
safely use power-like calculations to estimate
the strength of particular pathways, and in this
context, power may be a normative ideal. But
this presupposes some way other than power to
arrive at the correct structure.

Causation from Intervention

We're finally in a position to retur
at the beginning of this article ab
ideas” for representing causation.
ideas is the use of multiple correl
tingencies, as in the path-analys
glimpsed in the previous section.
represent a causal system as a gra
causes to effects, along the lines ¢
3. These graphs embody statistical
pattern of conditional probabiliti
depicted events — that put consts:
can be a cause of what effect. At
cal level, we might encode this p
tingencies and then find the best
least a good graph — that fits thé
ing structure is our subjective th
model of the reigning causal for
complain that thisisn’t exactly an
ing as it does from data-analytic w:
in the 1920s (see Wright 1960 f;
also Simon 1953). But perhaps it’s
to take such diagrams seriously as n
sentations, mental causal maps. Fugi
tions may constitute genuine advan
what these could be.

We noted that graphical repres
multiple-correlation systems are:
lems of confounding and under
The very same pattern of correlati
correlations can be equally consis
different causal graphs, as the Fig
illustrates. Faced with this kind of
minacy, though, scientists don't alw:
their hands. They can sometimés
ments to bear in selecting among
causal possibilities. In the case of ]
example, imagine an experiment.in
entist explicitly manipulates facto
its value. You'd expect this expe
change the value of B in the set u
but not in that of Figure 3b. Intuj
because manipulating a factor can h
ward influence on its effects, not bag
ence on its causes. So interventio
inate the two causal frameworks.
can sometimes make the same di
out getting our hands dirty if we kn
at which the factors change their
causes don't follow their effects in
world of Figure 3a, observing a ¢
should be followed by observing a
but this is not the case in Figure 3b;

Manipulating factors, however, b
tage that goes beyond merely clarify



ps. By changing the value of a factor,
on remove the influence of other fac-
pically covary with it, isolating the
m confoundings. If we're interested,
le, in whether listening to Mozart
tudents’ math scores, we could ran-
gn one set of students to listen to fif-
tes of Mozart and another to fifteen
ilence before a math test. In doing
emoving the influence of intelligence,
.-and other background factors that
« both a tendency to listen to Mozart
well on math tests. In the graph of
uppose factor A is the social class
' families, B is intelligence, C is lis-
Mozart, and D is test performance.
nipulation just described deletes the
social class and intelligence to Mozart
‘the experiment we're contemplat-
its with more intelligence are no more
sten to Mozart than those with low
&. If we still find an effect of listening
res, this can assure us that Mozart lis-
¢ts the scores apart from the influence
background variables. This advantage
tlating is due at least in part to the fact
rention places additional constraints
istical relations among the variables
0). If we manipulate Mozart listening
ribed, we're essentially creating a new
tructure — Figure 3a minus the arrows
liclass and intelligence to Mozart lis-
nd we're demanding that the corre-
ange in a way that conforms to this

vidence suggests that adults, chil-
‘even rats are sometimes aware of
ts of explicitly manipulating variables
g:a causal structure (Blaisdell, Sawa,
d Waldmann 2006; Gopnik et al.
gnado and Sloman 2005; Steyvers,
fm; Wagenmakers, and Blum 2003).
sle, Gopnik et al. (2004) report an
it“in which four-year-olds observed
ftaining two “puppets” (simple rods
rently colored balls attached). The
iter could move the puppets in two
out of the view of the children (by
inder the stage) or in their view (by
&m up and down). The experimenter
hildren that one of the puppets was
at this puppet could make the other
children’s task was to decide which
al'~ say, the yellow or the green one.
first saw the yellow and green pup-
ng together as the result of the exper-
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imenter’s concealed action. They then observed
the experimenter explicitly pulling up the yel-
low puppet while the green puppet remained
stationary. Under these conditions, 78 percent
of the children could identify the green pup-
pet as the special one. Because a child saw
the experimenter manipulate the yellow pup-
pet without any effect on the green one, he
or she could reason that the yellow puppet
couldn’t have been responsible for their initial
joint movement and, thus, that the green puppet
must be the cause. Purely association-based or
correlation-based theories have trouble account-
ing for results like these, since such models don’t
distinguish between event changes that result
from interventions and those that result from
noninterventions.

In more complex situations (and with college-
age participants), however, the advantage for
interventions is not as clear-cut (Lagnado and
Sloman 2005; Steyvers et al. 2003). Accord-
ing to Lagnado and Sloman, any benefit for
intervention in their experiments seems due to
the simple temporal consequences mentioned
earlier (that interventions must precede their
effects) rather than to the statistical indepen-
dencies that interventions create. Steyvers et al.
(2003: Experiment 2) presented ten observa-
tional trials about a three-variable system. They
then allowed participants a single intervention,
followed by an additional ten trials based on
that intervention. (No explicit temporal infor-
mation was available during the observation
or intervention trials.) Participants’ ability to
identify the correct causal structure increased
from 18 percent before intervention to 34 per-
cent after (chance was 5.6 percent); however,
ideal use of the intervention in this experiment
should have led to 100 percent accuracy.!! This
suggests that when the environment is simple
(as in Gopnik et al. 2004) and people know
there are only a small number of potential causal
alternatives (e.g., X causes Y vs. Y causes X),
they can use facts about interventions to test
which alternative is correct. When the number
of alternatives is larger, hypothesis testing isn’t
as easy, and the participants are less able to use
the difference between observations and inter-
ventions to determine the causal arrangement.
Investigators have also looked at participants’
ability to use a previously learned causal struc-
ture to make predictions based on observations
or interventions, and we will consider the results
of these experiments in the section on reasoning
later in this article. The present point is that
the intervention/observation difference is not
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very robust when people must go from data to
causal structure.

Perhaps one reason why people don’t always
pick up on interventions is that — as every exper-
imentalist knows — interventions don’t guaran-
tee freedom from confounding. The literature
on causal nets sometimes suggests that interven-
ing entails only removing causal connections —
links from the immediate causes of the variable
that’s being manipulated (i.e., the independent
variable). But manipulations typically insert a
new cause into the situation that substitutes for
the old one in controlling the independent vari-
able, and sometimes the new cause comes along
with extraneous connections of its own. Take the
example of the Mozart effect. Randomizing par-
ticipants to conditions removes the influence of
intelligence and other participant-centered fac-
tors. But placing participants in a control group
that has to experience fifteen minutes of silence
may have an aversive effect that could lower test
scores to a greater extent than would merely
not listening to Mozart (see Schellenberg 2005).
Figuring out the right manipulation isn’t always
an easy matter. Ambiguity about the possible
effects of an intervention may lead participants
to back off from using such cues during causal
learning. Of course, you can define “interven-
tion” as a manipulation that does not affect
any variable other than the one intervened on
(Gopnik et al. 2004; Hausman and Woodward
1999), but this is not much help to the working
scientist or layperson, who often doesn’t have
advance knowledge of possible side effects of the
manipulation.!?

Reasoning from Causal Theories

We've just looked at the possibility that people
discover causal relations by noticing the pattern-
ing of events in their surroundings. That method
is problematic for both theoretical and empiri-
cal reasons. Theoretically, there is no limit on
the number or complexity of potential causal
relationships, and correlation is often unable to
decide among these rival causal set ups. Empiri-
cally, there is no compelling evidence that peo-
ple have hard-wired cause detectors, so people
probably don’t automatically derive causal facts
from event perception. Moreover, our ability
to infer cause from event co-occurrence seems
to rely heavily on higher-level beliefs about
what sorts of events can cause others, on beliefs
about how events interact mechanistically, and
on pragmatic pressures concerning what needs

to be explained. To make matters
edge about cause sometimes col
edge about co-occurrence frequen
lation.

The classic alternative strate
causal knowledge is a form of inf&
best explanation (Harman 1965).
with theories about the potential ¢
phenomenon and then check to se
ory best predicts the data. The the
vides the best fit is the one that
causal picture. Of course, this form
doesn’t give us certainty about o
clusions, since it depends on the r:
natives we’ve considered, on the ¥:
tests we've performed, and on the
the data we've collected. But no:m
certainty about such matters. What
a better idea about correct causal 1
the best explanation that exploits
approach reserves a place for obsery;
but the place is at the receiving en
theory rather than at its source.

This top-down strategy, howe
host of further psychological probler
need to know the source of our
hypotheses if they don’t arise purely:
vation. We also need to consider how
causal theories to make the sorts o
that hypothesis testing depends o
respect, the causal schemas or Bayesi
looked at earlier can be helpful. We
people don’t always accurately con;
schemes from data, even when th
to manipulate relevant variables. Ni
once people settle on such a repres
may guide them to conclusions thz
follow. .

Representing Causal Information.
Principles and Causal Theories

If we don’t get causal information
perceptual cause detectors or from p
tive/correlational information, what!

CAUSAL PRIMITIVES

According to one top-down theo
ity, we have, perhaps innately, certai
causal concepts or principles that we
bear on the events we observe or:ta
primitives that lend the events a causal
tation. Perhaps there is a single primiti
relation, cause(x, y), that we combine w
concepts to produce more Complex an



riptions (e.g., Dowty 1979; McCaw-
Parsons 1990). Thus, we might men-
.ent the sentence in (7a) as (7b):

hn paints a picture
ause (John paints, become (a picture
xists))
ys there are several primitive causal
+ subtypes that vary in ways that dis-
nong causing, enabling, and prevent-
others (e.g., Jackendoff 1990; Schank
ck 1981; Talmy 1988; Wolff, Klettke,
nd Song 2005; see also Tufte 2006 for
nclusions about causal graphs).
sted earlier that there was no strong
support the view that people have
detectors in perception, but this is
ith the possibility of innate causal
he difficulty for the perceptual view
nes that are supposed to trigger causal
automatically can usually be inter
ncausally. But this Humean way of
sbout the perceptual demonstrations
“what we should expect if our inter-
“of the scenes depends on how we
¢ causal concepts. Having an innate
of cause doesn't mean that external
i force us to apply it. But having an
etceptual) cause detector — an input
n Fodor’s (1983) sense — presumably

urse, the existence of these concepts
mean that perceptual or contingency
on plays no role in our judgments about
and it doesn’t mean that babies appear
ene already knowing everything about
that adults do. Percepts and contin-
an provide evidence about what we
nvestigate to uncover possible causal
ons; however, they don’t ordinarily pro-
irect route to such connections. Sim-
ving a causal concept may be neces-
\derstanding causal systems, but exactly
ises what in a particular physical set-
1 requires further learning. Knowing
fits can be connected causally doesn’t
cally tell us, for example, how chem-
tions take place or how astronomical
nteract; it simply gives us one of the
nits or building blocks. Infants may have
main-specific theories in areas such as
gy (Carey 1985), biology (Atran 1998),
cs (Spelke, Breinlinger, Macomber, and
1992) that provide more specific infor-
bout causal relations in these areas, but
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even initial theories obviously undergo elabo-
rations with experience and schooling, perhaps
quite radical ones.

The existence of conceptually primitive
causal concepts goes along with the idea that
babies come equipped with the notions that
events have causes, that the causes precede their
effects, and that the causes bring about the
effects in a mechanistic way. Bullock, Gelman,
and Baillargeon (1982) propose principles along
these lines — their Determinism, Priority, and
Mechanism principles — and they suggest that
children’s and adults’ later understanding of
cause builds on these principles by adding infor-
mation both about specific types of causal rela-
tions and about which environmental cues are
most important when events interact. Preschool-
ers do not understand that rainbows are caused
by scattering light, but they know that rain-
bows have some preceding mechanistic cause or
other.

CAUSAL SCHEMAS

Many cognitive theories suggest that peo-
ple maintain unified representations of causal
systems. If the system is the CD player in
Figure 1, then memory for this information
would include the individual causal relations
(corresponding to the arrows in the figure)
together with some larger structure that spec-
ifies how they fit together. Some theories rep-
resent the structure in terms of propositions, as
in (7b), with further embedding for more com-
plex situations (e.g., Gentner 1983); other theo-
ries employ more diagrammatic representations,
similar to Figure 1 itself. The unified represen-
tations in either case may speed search for the
included facts, make the included information
less susceptible to interference, and highlight
certain inferences. Of course, a commitment
to a unified representation still leaves room for
some flexibility in the representation’s abstract-
ness and completeness. It’s possible that causal
schemas are relatively sparse, even for familiar
causal systems (Rozenblit and Keil 2002), and
they may sometimes amount to little more than
top-level heuristics, such as “more effort yields
more results” (diSessa 2000).

As cognitive representations, causal schemas
don’t necessarily carry explicit information
about the statistical relations among the
included events. It seems possible that people
could possess a schema similar to that of Fig-
ure 1 and still fail to notice the implications it has
for statistical dependencies and independencies,
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such as the ones we considered earlier (see the
section Causation from Correlation). What sets
Bayes nets apart from other causal schemas in
psychology is their tight connection to statistical
matters. Bayes nets depend essentially for their
construction on a property called the (Parental)
Markov condition (Pearl 2000; Spirtes, Gly-
mour, and Scheines 2000). This is the principle
that conditioning on the states of the immedi-
ate causes (the “parents”) of a variable renders
that variable statistically independent of all other
variables in the net, except for those it causes (its
“descendants”). Because the Markov principle is
what determines whether a Bayes net contains
or omits a link, the plausibility of Bayes nets as
a psychological representation depends on the
Markov condition. In the case of the CD player
in Figure 1, holding constant whether the light
strikes the diode will make the transmission of
electrical signals independent of the rest of the
variables in the figure. In the next section, we
examine the empirical status of this assumption:
Do people who know the causal connectionsin a
system obey the Markov principle? In the mean-
time, we consider some theoretical issues that
surround Bayes nets as cognitive schemas.

CAUSAL BAYESIAN NETWORKS AND FUNCTIONAL
CAUSAL MODELS AS CAUSAL SCHEMAS

Although psychologists commonly cite Pearl
(2000) as a source for the theory of Bayes nets,
they gloss over the fact that Pearl presents three
different versions of the theory that provide suc-
cessively more complex accounts of causality.
These versions of Bayes nets seem to correspond
to stages in the theory’s evolution, with later ver-
sions placing more constraints on the representa-
tion. What Pearl refers to as “Bayesian networks”
are directed graphs of variables and links that
respect the Markov principle we just reviewed.
‘What Bayesian networks depict are the pattern
of statistical dependencies and independencies
among a set of variables. If a set of variables
X is statistically independent of another set Y
given Z, then the graph displays these indepen-
dencies (the graph is a D-map in Pearl’s 1988
terminology). Conversely, if the graph displays
X as independent of Y given Z, then the prob-
ability distribution contains this independency
(the graph is an I-map). For reasons mentioned
in connection with Figure 3, however, Bayesian
networks do “not necessarily imply causation”
(Pearl 2000: 21), since several different networks
can be equally consistent with the pattern of
statistical dependencies and independencies in a
data set.
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To overcome this indetermi
Pearl moves to a reformulated
called “causal Bayesian networks.
works have the same form as ordina
They are still directed acyclic grap
with no loops from a variable teit
those in Figures 1 and 3. But causal’
works also embody constraints ab
tions. These networks are answerah
the statistical dependencies inhere
graph of variables and links, but a}
tistical dependencies in the subg
when you manipulate or intervene
ables. Within this theory, interveni
able means severing the connection
ent variables and setting its value t
For example, we could intervene
turns” variable in Figure 1 by disco:
CD holder from the motor and mi
ing it. Causal Bayes networks help
indeterminacy problem by requiri
sentation to reflect all the new st
tions that these interventions impl

In the last part of Chapter 1 andin
of his book, Pearl (2000) moves to 2
of representation: “functional causal
first glance, there doesn’t seem to be
ference between causal Bayesian ne
functional causal models, and thisis
Pearl’s claims about the latter mod
ing. Functional causal models are giv
of equations of a particular type th
form in (8):

(8) Xi =fi(pai, ui);

Each of these equations specifies th
one of the variables x; on the basis o

i=1,2,...

an additional set of variatles represerit
unknown factors, u;, that also affect :
case of Figure 1, for example, we cas
the node labeled CD turns as having:
0 if the CD is not turning and 1 if it i
Thatis, xcp = O means the CD is nottis
xcp = 1 means that it is. This value will
mined by a function like that in (8);
will depend on the value of the paren
(whether the motor is turning) and of
ucp (not shown in Figure 1) represen
unknown factors. Pearl considers a sp
of this representation, called “Markov.
models,” in which the graph is acycli
u terms are independent of each oth
proves that Markovian causal models
sistent with exactly the same joint pro
distributions as the corresponding caus
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tribution functions” (Pear] 2000: 31).
¢ the advantage to functional causal
we didn’t already have with causal
ts? (From now on, let’s call these
els” and “causal nets” for short.) We
discussing causal nets that the defi-
ese nets was given, not in terms of
hanisms, but in terms of probabili-
al net is just a Bayesian network that
dditional probability distributions,
ones we get by intervening on vari-
 (Markovian) causal models, we are
e opposite direction, beginning with
1at completely determine the states
bles rather than beginning with prob-
is seems consistent with the lessons
1alf of this article. As Pearl (2000: 31)
_agents who choose to organize their
‘using Markovian causal models can
le assertions about conditional inde-
velations without assessing numeri-
ilities — a common ability among
-and a useful feature for inference.”
perates in a deterministic way in
lels, with any uncertainty confined to
knowledge about the values of the
wer, the system’s equations in (8) are
trary functions that happen to give
t x; values for cases we've observed.
ct the actual causal determinants of
with pa; and u; being the true causes

explicit about the fact that an impor-
it of causal models over causal net-
that the models deal correctly with
tual conditionals — statements of the
‘had happened, then Y would have
? like If Fred had taken the trouble to fix
¢ wouldn't have had an accident. It's
ed at least since Goodman (1955)
a:close connection between counter-
id:causation. The truth of many coun-
onditionals seems to depend on
that dictate the behavior of events.
hold not just in our current state
it also in alternative states that dif-
s but still obey the laws in ques-
asonable to think that the sentence
is true or false because of the causal
ing mechanical devices like brakes.
emas are records of our understand-
al laws, then they should enable us

CAUSAL THINKING

615

to make judgments about counterfactual condi-
tionals. Pearl is clearly right that if causal models
support counterfactuals, then this gives them a
leg up on ordinary causal nets. But in order to
do this, the functions in (8) have to mirror these
causal laws and must be constant over all causally
possible situations. Pearl outlines a specific pro-
cedure that is supposed to answer counterfactual
questions (“Would Y have happened if X had
happened?”) using causal models, and we'll look
at the psychological plausibility of this hypothe-
sis in more detail in discussing causal reasoning.
It’s clear, though, that knowledge of causal laws
(from the £;’s) and knowledge of the input states
of the system (from the u;'s) ought to give us
what we need to simulate how the system will
work in all the eventualities it represents, includ-
ing counterfactual ones.

The direction of explanation that Pear]’s anal-
ysis takes is from causality (as given by the
causal functions in (8)) to counterfactuals. At
first glance, though, the opposite strategy may
also seem possible. Some philosophical analy-
ses of causation — prominently, David Lewis’s
(1973) - interpret causation in terms of coun-
terfactuals. If event e would not have happened
had ¢ not happened, then e causally depends
on ¢, according to this analysis. Psychologists
have occasionally followed this lead, deciding
whether one event in a story causes a second
according to whether people are willing to say
that the second would not have happened if
the first hadn’t happened (Trabasso and van den
Broek 1985). Lewis’s theory of counterfactuals,
however, depends on similarity among possible
worlds, where similarity can, in turn, depend on
causal laws. The counterfactual “If c had not hap-
pened then e would not have happened” is true
just in case there is a world in which neither ¢ nor
e happens that is closer to the actual world than
any world where ¢ doesn’t happen but e does.
And whether one world is closer to the actual
world than another depends at least in part on
whether the causal laws of the actual world are
preserved in the alternative. Lewis didn’t intend
his analysis to eliminate causal laws but to pro-
vide a new way of exploiting them in dealing
with relations between individual events.!® So
even if we adopt Lewis’s theory, we still need
the causal principles that the f;’s embody (see
the papers in Collins, Hall, and Paul 2004 for
more recent work on the counterfactual analysis
of cause).

Another possible complaint about causal
models as psychological representations is that
they don’t come with enough structure to
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explain how people are able to learn them
(Tenenbaum, Griffiths, and Niyogi, in press).
In figuring out how a device like a CD player
works, we don’t start out considering all poten-
tial networks that connect the key events or vari-
ables in the system. Instead, we take seriously
only those networks that conform to our prior
knowledge of what general classes of events can
be causes for others. Because lasers are unlikely
to turn motors, we don’t waste time testing (or
at least we give low weight to) causal models
that incorporate such a link. According to Tenen-
baum et al., people use higher-level theories to
determine which network structures are possi-
ble, and this restricts the space of hypotheses
they take into account. This objection seems
right, since we do sometimes possess high-level
knowledge (e.g., that diseases cause symptoms
or that beliefs and desires cause actions) that
shapes lower-level theories. Moreover, higher-
level knowledge about causal laws seems neces-
sary, given the restrictions on the f; functions that
we've just discussed. But even in Tenenbaum
et al.’s more elaborate hierarchy, causal models
are at center-stage, mediating higher-level the-
ory and data. This leaves us with an empiri-
cal issue: Assuming the causal models are pos-
sible psychological representations, how well do
they explain people’s ability to reason from their
causal beliefs?

Causal Reasoning

The phrase causal reasoning could potentially
apply to nearly any type of causal thinking,
including the types of causal attribution that we
considered in the first part of this chapter. The
issue there was how we reason to causal beliefs
from data or other noncausal sources. Our con-
siderations so far suggest that there may be rela-
tively little reliable reasoning of this sort without
a healthy dose of top-down causal information
already in place. But how well are we able to
exploit this top-down information? Once we
know a batch of causal relations, how do we use
them in drawing further conclusions?

CAUSAL INTERPRETATIONS OF INDICATIVE
CONDITIONALS

Cognitive psychology has tip-toed up to the
issue of how people reason from causal beliefs.
A number of experiments have attempted to
demonstrate that inferences from conditional
sentences — ones of the form If p then q — can
depend on whether the content of the condi-
tionals suggests a causal relation (e.g., Cum-
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mins, Lubart, Alksnis, and Rist 19
mayer 1975; Thompson 1994). Th
als in these experiments are indica
If the car is out of gas, then it stalls,
the counterfactual (or subjunctive
als mentioned in the previous secti
happened, then Y would have happe
indicatives are less obviously tied to
tionships than counterfactuals, peo
son with such conditionals in a way
depend on causal content. :

What the results of these studies
ever, is that causal content affects p
ences. For example, Thompson (
pared arguments like the ones in (9
likely her participants were to say t
clusion logically followed:

(9) a. Ifbutter is heated, then it
The butter has melted.
Was the butter heated?
b. If the car is out of gas, the
The car has stalled.

Is the car out of gas?

Arguments (9a) and (9b) share the's
that both have the structure: If p the
if participants attend only to this for
ing about the arguments, they shoul.
the same way to each. However, peo:
about cars include the fact that rus
gas is just one thing that could cause
whereas their beliefs about butter:
fact that heating butter is virtually thi
to get it to melt. If people lean on
in determining whether the conclusi
follow, they should be more likely
the argument in (9a) than the o
and indeed they do. The differenc
tance rates is about forty percentag
is possible to argue about the role
causal information versus more abs
information in experiments like thes
aspects of the data show that partici
simply throwing away the if. .. then
favor of their causal beliefs. For oy
however, the question is what such ¢
can tell us about the nature of th
principles.

Thompson (1994) and others
results as due to people’s knowledg
sary and sufficient conditions (see al
Graham 1999). Heating butter is bot
and sufficient for its melting, where
out of gas is sufficient but not necess:
stalling. Thus, given that the butter
it was probably heated; but given
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y4) and (9b) is therefore that partici-
of no alternative causes for the con-
9a) that would block the inference,
oknow of alternatives for the condi-
9b) — perhaps an overheated engine
fuel pump. Giving participants fur-
s or reminders that explicitly men-
tive or additional causes also affects
ons they're willing to draw (Byrne
et al. 1999; De Neys et al. 2003;
ars, and Clarke 1990).
¢ general framing in terms of neces-
cient conditions, though, raises the
ether the experiments are tapping
jith specifically causal relations or

cited earlier (Ahn and Graham
mpson 1994) demonstrate similar
conditionals that are about non-
ijons (e.g., conditional permissions
¢ licensing board grants them a license,
wrant is allowed to sell liquor). Like-
an interpret the results as due to par-
e of conditional probabilities (Evans
2004; Oaksford and Chater 2003).
0-Oaksford and Chater (2003), for
eople’s response to the question in
s-on the conditional probability that
ated given that it is melted, and the
9b) reflects the conditional prob-
“the car is out of gas given that it
:Since the first of these is likely to
han the second, participants should
wer “yes” more often for (9a) than

ition informs the way they represent
ems, but their reasoning is carried
presentations that don’t distinguish
-other relations.
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‘be able to get a more direct view
ople reason about causes by look-

1

CAUSAL THINKING

617

ing at experiments that give participants state-
ments containing the word cause or its deriva-
tives. A number of studies have found that
people make different inferences from state-
ments of the form p causes q (or g causally
depends on p) than from ones of the form Ifp then
q (Rips 1983; Sloman and Lagnado 2005; Stau-
denmayer 1975). For example, Staudenmayer
(1975) observed that participants were more
likely to interpret explicit causal statements as
implying a two-way, if-and-only-if, connection.
For example, Turning the switch on causes the light
to go on was more likely than If the switch is turned
on then the light goes on to entail that the light goes
on if and only if the switch is turned on. Many
causal setups, however, don’t lend themselves to
such an interpretation. My turning on the switch
causes the light to go on is a case in point, since
the light’s going on could be caused by someone
else’s turning. Staudenmayer included examples
like these, in which the cause is not necessary for
the effect. But if causal statements don't force an
if-and-only-if interpretation, why the difference
between causals and conditionals in the results?
It seems possible that cause allows more freedom
of interpretation than if. Although a two-way
interpretation is possible for both if and cause in
some situations (for pragmatic or other reasons),
people may be more cautious about adopting it
in the case of if.

In another respect, however, cause is more
selective than if. Consider the arguments in
(10):

(10) a. Ifthe gear turns then the light flashes.
The bell rings.
Therefore, if the gear turns then both
the light flashes and the bell rings.

b. The light flashing causally depends on

the gear turning,
The bell rings.
Therefore, both the light flashing and
the bell ringing causally depend on the
gear turning.

The conclusion of (102) seems to follow, since
the conditionals are understood as statements
about an existing state of affairs. The gear’s turn-
ing means that the light will flash, and since
the turning presumably won’t affect the bell’s
ringing, then if the turning occurs, so will the
flashing and the ringing. Argument (10a) is valid
in classical propositional logic, reading if as the
truth functional connective “>” and and as “&.”
There are many reasons to question whether nat-
ural language if is equivalent to D (see Bennett
2003 for a thorough review); but even if we treat
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the if’s in (10a) as expressing probabilistic or
default relations ~ for example, that the condi-
tional probability of the flashing is high given
the turning, or that the turning occurs when the
flashing does, all else being equal - the infer-
ence in (10a) still seems a strong one. Not so
(10b). Intuitively, the conclusion asserts a causal
connection between the gear's turning and the
bell’s ringing that goes beyond anything asserted
in (10b)’s premises. In line with this impression,
I found that, although 60.2 percent of partici-
pants agreed that the conclusion of arguments
like (10a) had to be true whenever the pretmises
were true, only 31.0 percent agreed to the con-
clusion of items like (10b) (Rips 1983). (The
relatively low overall percentage of responses is
probably due to the fact that the full data set
included several arguments with more complex
structures than that of (10).)

These differences between cause and ifreflect
fundamental differences in their meaning. There
are disputes about the correct formal semantics
for conditional sentences (see Bennett 2003).
But it is plausible to think that people evaluate
them by temporarily supposing that the if-part
(antecedent) of the sentence is true and then
assessing the then-part (consequent) in that sup-
posed situation (Ramsey 1929/ 1990; Stalnaker
1968).1 In these terms, if relates the current
situation to a similar one (or similar ones) in
which the antecedent holds. Conditionals can
thus depend on circumstances that may notbe a
direct effect of the antecedent but simply carry
over from the actual situation to the supposed
one. This explains why we tend to judge that
the conclusion of (10a) follows: Although the
gear’s turning doesn’t cause the bell’s ringing,
nevertheless, the ringing occurs in the situa.
tion in which the gear turns. Cause, however,
is not a sentence connective, but a predicate
that connects terms for events. In order to cre-
ate parallel structures between conditionals and
causals in these experiments, investigators have
to rephrase the antecedent and consequent as
nominals (e.g., the gear turns in (10a) becomes
the gear turning in ( 10b)), but the nominals still

refer to events. Whether a causal sentence is
true depends on exactly how these events are
connected and not on what other circumstances
may happen to hold in a situation in which the
cause takes place. In this respect, causal sen-
tences depend on the specifics of the cause-
effect relation, just as ordinary predicates like
kiss or kick do. Whether John kisses Mary is true
depends on whether the appropriate relation
holds between John and Mary, and whether the
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gear’s turning causes both the light’
the bell’s ringing likewise depends
the right causal connection holds b
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such connection. '
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(or anything else, for that matter), §
metic facts don't have causal propertie
The experiments just mentioned pro
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from indicative conditional ones, even:
conditionals have causal content. The
ments have less to say, however, about th
of causal reasoning itself We'd like -

principle in estimating probabilities
events these models encode, Second,
predictions about the system’s behavio
respect differences between interventi
observations. We'll see that although

dence for the first of these predictions i
evidence for the second is more robust.
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seen that Bayesian causal models (Pearl
ovide an explicit representation of
relations, and they include norma-
iraints that should govern causal rea-
\ particular, causal models obey the
rkov principle, which provides their
basis and mirrors statistical depen-
Ve can therefore get a closer look at
soning by teaching people causal con-
that compose such a model and check-
er they follow the Markov principle in
iferences from it.

ioneering study of this kind, Rehder
ett (2005) taught participants explicit
ations about fictional categories, such
Victoria shrimp or Neptune comput-
ample, participants might be told that
shrimp tend to have a high quan-
\Ch neurotransmitter, a long-lasting
onse, an accelerated sleep cycle, and a
weight. The participants learned that
percent of category members have each
eatures. They also learned the causal
among these features, both verbally
explicit diagram. For example, these
ts might learn the “common cause”
n Figure 4a, in which high levels of
rotransmitter in Lake Victoria shrimp
ong-lasting flight response, an acceler-
cycle, and a high body weight. Rehder
ett then tested the participants by giv-
descriptions of a category member with
whn feature and asking them to rate how
category member was to have that fea-
likely is it, for instance, that a Victo-
p with high ACh, a long flight response,
iccelerated sleep cycle, also has high body
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_interesting predictions concern the
arkov condition: Conditioning on the
fthe parent variables renders a child vari-
tistically independent of all other vari-
xcept its descendants. In the case of the
43 example, if we know whether a Lake
a:shrimp has high (or low) ACh, then
ues of the lower-level features — flight
e and body weight, for example — will be
ally independent of each other. If we're
o predict whether a shrimp has high body
it should matter a lot whether it has
low ACh levels. But as long as we know
level, we needn’t worry about whether
any of the sister features (a long flight
e or an accelerated sleep cycle), since
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these are not descendants of body weight. It
shouldn’t matter how many of these sister fea-
tures the shrimp has, given that it has high (low)
ACh.

What Rehder and Burnett (2005) found,
however, is that participants systematically vio-
lated the Markov principle. Participants’ esti-
mates of the probability that a Lake Victoria
shrimp has high body weight correctly depended
on whether they were told it had high levels
of ACh. But these estimates also increased if
the shrimp had a long flight response and an
accelerated sleep cycle, even when participants
knew the state of the ACh level. (See Rehder
2006; Waldmann and Hagmayer 2005: Experi-
ment 3, for evidence of similar violations in the
case of causal systems other than categories.)
Rehder and Burnett’s participants had learned
the common-cause structure in Figure 4a, which
depicts the causal model, and the Markov prin-
ciple is the central ingredient in defining the
model. So why do participants flagrantly disre-
gard the principle?

Rehder and Burnett propose that participants
were indeed using causal nets, but nets with a
configuration that differed from the one they
learned. According to this theory, the partici-
pants were assuming that there is an additional
hidden node representing the category mem-
ber’s underlying mechanisms. The network in
Figure 4b illustrates this structure, containing
the new hidden mechanism node with direct
connections to all the observed nodes. According
to Rehder and Burnett (2005: 37), “to the extent
that an exemplar has most or all of the cate-
gory’s characteristic features, it also will be con-
sidered a well functioning category member. That
is, the many characteristic features are taken
as a sign that the exemplar’s underlying causal
mechanisms functioned (and/or are continuing
to function) properly or normally for members
of that kind. And if the exemplar’s underlying
mechanisms are operating normally, then they
are likely to have produced a characteristic value
on the unobserved dimension.” Because partici-
pants obviously aren’t told the state of the hid-
den mechanism, the sister nodes at the bottom
of the figure are no longer statistically indepen-
dent. Thus, participants’ tendency to rely on
these sister nodes no longer violates the Markov
principle. Rehder and Burnett show in further
experiments that this hidden-mechanism the-
ory also predicts the results from experiments
using different network structures — for exam-
ple, a net consisting of a single chain of variables
and a “common effect” net with multiple causes
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Figure 4. An example of the common cause condition from Rehder and Burnett (2005: Ex
(a) The network participants learned, and (b) a possible alternative network to explain the &

findings.

for a single effect. For the latter networks, the
underlying mechanism idea seems quite plausi-
ble, and the theory is consistent with models of
causal centrality and psychological essentialism
(e.g., Ahn et al. 1995). Participants may suspect
that a natural kind or complex artifact is likely to
have some central cause or causes that hold the
object together, an assumption that’s in line with
essentialist theories of categories (e.g., Gelman
2003; Medin and Ortony 1989). As Hausman

High ACh
Neurotransmitter

‘Accelerated
“8leep Cycle:. ,

High Body
Weight -

and Woodward (1999) note, applica
causal Markov principle have to ens
relevant variables are included in the
the causal system is analyzed at the r
and that the included variables are no
or definitionally related.

For common cause structures suc
ure 4a, however, why would partic
to the trouble of positing an extr
mechanism when they already have a



~suse? Rehder and Burnett (2005:
2) also found the same pattern of
1olat10ns of the Markov constraint —

cipants were taught a common cause
ke Figure 4a for a nonsense category,
ise features were arbitrarily labeled A,
+Even if hidden mechanisms are rea-

pose there are underlying causes in
y those taught in the experiment, it is
nderstand why you would posit them
usly fictitious category. Why would
ts believe there are hidden mecha-
erning well-functioning daxes? You
east expect some decrease in the non-
nce effect when the category gives
ts less reason to suppose that an under-
hanism is at work. But there doesn't
-much, if any, difference in the extent

ore primitive way. Perhaps they were
that the dominant values of a cate-
tures tend to cluster together, with-
too much about the exact causal set
pants may have been short-cutting the
circuitry, relying instead on the belief
jore typical Lake Victoria shrimp fea-
term has, the more likely it is to have
e Victoria shrimp features. Ditto for
ticipants weren't completely ignoring
structure, since they recognized the
ect causes. But they may have given
ight to implications for the indirectly
‘variables.

G'FROM CAUSAL MODELS:

JON VERSUS INTERVENTION

ssing whether people are able to infer
s from data (see Causation from Inter-
we found only limited support for the
‘people can exploit interventions in
figure out the correct causal system.
people use interventions within very
stems, their ability to do so seems
rapidly with even moderately com-
orks. This difficulty may reflect general
on-processing limits, since the number
e-causal nets (acyclic directed graphs)
exponentially with the number of vari-
e 'Rips and Conrad 1989). A more
test of people’s understanding of the
on/observation difference is simply to
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give people the relevant causal relations and see
whether they can predict the effects of interven-
ing on a variable versus observing its values.
Two series of experiments provide support
for sensitivity to interventions. Sloman and
Lagnado (2005: Experiment 6, p. 26) gave one
group of participants the problem in (11):

{11) All rocket ships have two components, A
and B. Movement of Component A causes
Component B to move. In other word,
if A, then B. Both are moving, Suppose
Component B were prevented from mov-
ing, would Component A still be moving?

A second group received the same problem,
except that the final question was changed to
Suppose Component B were observed not to be
moving, would Component A siill be moving?
If an external process explicitly manipulates a
variable — in this case, prevents Component B
from moving — the internal causal connections
to that variable are no longer in force, and we
can't reliably use them to predict the state of
the cause (Component A). By contrast, if nor-
mal internal causes are intact — if B is merely
observed not to be moving — then the state
of the effect provides diagnostic information
about the cause. In line with this difference,
85 percent of participants responded “yes” to
the intervention question, but only 22 percent
did so for the observation question. A slightly
more complicated problem, involving a chain of
three variables instead of two, produced a sim-
ilar difference between intervention questions
and observation questions (Sloman and Lagnado
2005: Experiment 2). Waldmann and Hagmayer
(2005: Experiment 1) also found an observation/
intervention difference, using more complex
five-variable systems that they presented to par-
ticipants in both verbal and graphical formats.
It may seem odd, at first glance, that causal
nets (or models) make correct empirical predic-
tions in the case of the intervention/observation
difference but largely incorrect predictions in
the case of the causal Markov principle. This
divergence might be due to differences between
studies, but in fact, both results have appeared
within the same experiment (Waldmann and
Hagmayer 2005: Experiment 3). On second
thought, though, there is no reason why these
principles should necessarily hang together. We
associate both the observation/intervention dis-
tinction and the Markov principle with causal
nets because causal modelers have given clear
formal treatments for both. And the Markov



622 LANCE J. RIPS

principle, in particular, does seem tightly con-
nected to causal nets because of the role it
plays in their construction. But causal nets aren’t
the only way to formulate knowledge about
interventions. The basic idea that you can’t use
the state of a manipulated variable to make infer-
ences about its normal causes may simply be a
piece of commonsense knowledge that’s inde-
pendent of the specific representation it gets in
causal nets and models.!® Evidence for correct
understanding of interventions is support for cor-
rect causal reasoning but not necessarily support
for causal nets.

REASONING FROM CAUSAL MODELS:
COUNTERFACTUALS AND CAUSE

There’s one more piece of the causal net puz-
zle we need to consider. We've noticed substan-
tive differences, both theoretical and empirical,
between indicative conditional sentences and
related causal sentences, as in (10a) and (10b).
We've also noticed a much closer conceptual
link between counterfactual conditionals and
causals (see Causal Bayesian Networks and Func-
tional Causal Models as Causal Schemas). Pearl’s
(2000) move from causal nets to causal models,
in particular, was due to the fact that causal
models give a better formulation of counterfac-
tual questions. Causal models, but not causal
nets, can tell us whether a different effect would
have occurred if a cause had taken a value other
than its actual one. Do causal models correctly
predict people’s reasoning with counterfactuals?

To handle counterfactual statements within
the causal-model framework, we need a set of
structural equations, like those in (8), that spec-
ify the state of each variable in terms of the state
of both its parents and of uncorrelated back-
ground factors or error terms. In the simplest
possible case, consider a two-variable system,
such as that in (11). We can assume for the sake
of this example that the all variables are dichoto-
mous, either on or off, which we will code as 1 or
0. We can then specify the f functions like this:

(12) a. fa(up) =ua
b. fB (A, uB) = A*uB,

where A is the variable for Component A, and B
for Component B. In other words, Component
A will operate (A= 1) provided that the error
variable, u4, has the value 1, and Component
B will operate (B = 1 ) provided both that its
error variable, ug, is 1 and that Component A is
operating as well.

To determine the answer to a counterfactual
question in this case — for example, Suppose Com-

ponent B were not operating, would Cg
still operate? — we follow a series of
according to Pearl (2000: Theorem
first update the probability of the ba¢
variables, given the current evidence
actual state of affairs. If we assume th.
components are operating in the acty
in (11), then u4 = upg = 1. Second,
the causal model for an intervention o
mentioned in the antecedent of the ¢
tual. For the sample question just
we modify Component B in the usii
orphaning B from its parent A and
value to a constant, while also keeping
ables constant. This entails changing
tion in (12b) to: '

(12) V. fy(ug) =0,

since the antecedent states that Comy
is not operating. Finally, to determin
Component A would still operate, w
its probability (i.e., the value of f4) in
ified model, using the updated prob
the background variables. Since we ha
the equation in (12a) gives us a positi

According to the causal model f
the answer to our sample counterfac
tion should be exactly the same as
would get if the question had directly
the manipulation of Component B. Fo
we should also get a “yes” to the ques
pose Component B were prevented from ¢
would Component A still operate? This
also counterfactual and differs from th
only in making the intervention explic
and Lagnado’s (2005) Experiment
compared answers to straight count
and prevention counterfactuals, but
reliable difference between them (68
ticipants answered “yes” to the straigh
factual and 89% “yes” to the preventic
terfactual). A similar difference app
scenarios describing a slightly more com
three-variable system (Slomen and
2005: Experiment 2). One group ¢
pants rated the answer to a straight ¢
tual (e.g., What is the probability tha
have happened if B had not happened?
second group rated an explicit preven
terfactual (Someone intervened directly
venting it from happening. What is the p
ity thar A would have happened?). Th
probability rating for the straight counte
was 3.2 on a 1-5 response scale (1 =V
5 = very high probability), whereas the
was 3.9 for the prevention version. Al



Lagnado don’t compare these means
they do report that the first was
nitly higher than the scale midpoint
eas the second was significantly

ounterfactuals were the main rea-
roducing causal models (as an alter-
qusal nets), it’s important to see why
ictions fail. It is possible that partic-
ehaving in nonnormative ways in
ents just cited, but we should also
possibility that the procedure itself
correct account of how counterfactu-
understood. One thing that seems
Pear!’s (2000) procedure can’t eval-
sonable counterfactuals. As he points
ocedure is useless with “backtracking”
als that hypothesize what would
ened prior to a supposed event. For
Sentence (13) posits an event — get-
a course — and gives an earlier event

¢d had gotten an F in Theoretical Bil-
s in June, then it would have had to
been the case that he had forgotten to
is homework during the entire month

ay.

tking counterfactuals are sometimes
to- express because of tense shifts and
but there is no reason to think they
rent or uninformative. However, we
nable to understand or evaluate back-
‘counterfactuals if we had to sever the
om its normal parent causes, since it’s
 the cause that is in question. Back-
- counterfactuals take the proposition
d in the antecedent of the counterfac-
iagnostic of the proposition in the con-

ps we should follow Pearl (2000) in
side backtracking counterfactuals and
is procedure as a proposal about for-
unterfactuals only. However, even for-
unterfactuals may depend on how the
tical cause was brought about. Imagine
d’s F could have been the result of two
causes: his failure to do his homework
ence on the part of his instructor. Then
uation of the truth of the forward coun-
al in (14) will depend on which of these
e believe is the correct one:

fFred had gotten an F in the course, his
nstructor would have been disciplined.
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As it actually happened, Fred finished his home-
work, his instructor was diligent, and Fred got
a C. If we hold background variables constant,
snip the relevant causal connections (between
Fred’s homework and his grade and between the
instructor’s behavior and his grade), and then set
the grade to F, how do we determine whether
the counterfactual is true or false? Intuitively,
our judgment about the sentence would seem to
depend on the likelihood that Fred did his home-
work. On one hand, if he’s a marginal student,
then the cause of his F is probably his own doing,
and it’s unlikely that the instructor will be disci-
plined. On the other hand, if Fred is a model stu-
dent, then it may be more likely that the cause of
the F was the instructor’s negligence. The prob-
lem is that cutting the connection between the
state of Fred’s homework and his course grade
renders the probability of these variables inde-
pendent, and this means that the probability that
his instructor will be disciplined is also indepen-
dent of the homework.

The motive for cutting causal ties to the past
is clear. In a deterministic system, such as those
conforming to (8), no change to the actual event
can occur without some alteration to its causes.
To envision Fred receiving an F rather than a C,
we have to envision a world in which some of
the causes that produced his grade are no longer
in force. We must also construct this alteration
leaving as much as possible of the causal fab-
ric of the world intact, since arbitrary changes
to preceding causes give us no way to deter-
mine whether a counterfactual sentence is true
or false. But although some minimal break with
the past is necessary, it isn’t always correct to
make this break by causally isolating the event
mentioned in the antecedent of the counterfac-
tual. As the examples in (13) and (14) show, we
may have to trace back to some of the causes
of the antecedent event in order to see which
of them is most likely to have produced the
alteration. Determining which of the preceding
causes must be changed may depend on which is
most mutable (Kahneman and Miller 1986), as
well as which is powerful enough to bring about
the new effect.!®

These reflections may help explain the
differences between straight counterfactuals
and prevention counterfactuals in Sloman and
Lagnado’s (2005) experiments. Prevention coun-
terfactuals require explicit manipulation of the
event that the antecedent of the conditionals
describes. The scenario in (11) suggests that
if someone had prevented Component B from
operating, the intervention occurred directly at
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B (perhaps by disrupting its internal mecha-
nism). But the straight counterfactual (i.e., Sup-
pose Component B were not operating, would
Component A still operate?) allows more room
for interpretation. We're free to imagine differ-
ent ways for B to have stopped operating, some
of which might plausibly involve the failure of
A. Although it might seem that a world in which
both A and B fail is causally more distant from
the actual workaday world than one in which
only B fails, this depends on details that the sce-
nario in (11) does not supply. Stopping B by
direct action on B may be more disruptive than
stopping B by stopping A. There is simply no way
to tell. This ambiguity is related to one we have
met before in our study of causal models (in the
section Causation from Intervention). We noted
that intervening on an event means more than
removing an old cause. It also entails substituting
anew cause, and the way in which the intervener
does this can have important consequences for
what follows in the world of the intervention.
The present point is that if all we know is that
some event has changed from the actual situa-
tion to a counterfactual one, we have an even
larger choice of mechanisms for understanding
that change.

The difficulty with Pearl’s (2000) account
of counterfactuals doesn’t mean we necessar-
ily have to give up causal models. There may
be other theories of counterfactuals based on
causal schemas that provide better approaches to
cases such as (13)-(14).17 Nevertheless, people’s
representations of causal models are necessar-
ily incomplete depictions of event interactions,
since any event has a causal history stretching
back over enormous temporal distances. We can
indicate our ignorance about these prehistories
by including explicit representations of uncer-
tainty, such as Pearl’s u variables. But part of
our causal reasoning consists in filling in some of
these missing pieces, for example, in considering
what sort of disturbance or manipulation could
have brought about a hypothetical event. Sev-
ering preexisting connections in a model often
won't be enough to explain these circumstances,
since they may involve bringing in new mecha-
nisms that we hadn’t previously represented as
parts of the model.

Concluding Comments

Causal theorizing must be essential, both in
everyday thinking and scientific endeavors, but
it is unclear how people accomplish it. The
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implication of the first part of th
that we probably don’t do suchit
strictly bottom-up observation. We ¢
simple displays of colliding geome
as instances of pushings, pulling;
causal events. Similarly, we can in
swarming movements of geometrica
instances of actions — for exampls
catchings, and fightings, as Heider 3
(1944) demonstrated. But we ¢
a more analytical attitude to thes
interpreting these movements as n6
approachings, touchings, and departi
implication that one shape caused t}
move. There is no evidence to sug
causal interpretations are hardwire
etrable in the way standard percepty
often are. The evidence is consisten;
idea that we see these demos as ¢
probably only in the way that we
visual atrays as cows or toasters, Th
is reinforced by the fact that, alth
month-old infants may register so 3
animations as special, others that ad
as causal are not distinctive for these
course, doubts about innate perceptu;
detectors needn’t extend to doubts ah
causal concepts, but it seems likely
concepts, innate or learned, must ha
that aren’t purely perceptual.

Are the sources of causality co-o
frequencies? Here there are both e
conceptual difficulties. On the emp
people are obviously limited in whi
tial causes they can test using freque
methods, and there is no theory of
search through the space of these cau:
over, even when an experimenter -te
ipants about the relevant candidates
vides the relevant frequencies, the
appear guided by prior hypotheses in
uation of the data. Theoretically, the f
based or correlation-based metho
effect contrasts, AP, conditional AP;
Wagner strength, power, and path coe
all give incorrect answers in certain
ronments, especially when there are
founding factors. Explicit manipulatio
vention can remove some of the ambi
eliminating the confoundings, just as
tific experiments, but current researc
that people are often unable to make u
information, except in very simple set
empirical results are generally in line
conclusions of Waldmann (1996) and o



e knowledge of cause in a largely
hion. The theoretical results are in
he conclusion that this might be the
for them to pursue it.
wn approach implies that people
ypotheses when they assess or rea-
use. But this leaves plenty of room
_ Causal hypotheses could be any-
agmented bits of information about
,_highly integrated and consistent
clear that people can reason with
smation and that this reasoning differs
‘appropriately) from what they do
indicative conditionals. It also seems
cople’s causal knowledge of a situa-
atirely isolated into units at the grain
1] ‘atomic propositions (e.g., Rumel-
Tt is very unclear, though, what else
about such representations.
present one way of representing
mation in schematic form, and these
¢ many advantages in understand-
situations, especially in the context
ing and analysis. They provide a way
situation into statistically indepen-
‘and they therefore clarify the kinds
ons that we can draw from specific
ns and experiments. In particulat, they
. cases in which traditional statistical
uch as regression or factor analysis, are
ad to the right results. Should we also
‘nets to be the mental representations
e ordinarily use to store causal facts
2 Bayes nets go beyond a vague com-
o:.causal schemas in this respect, since
y strong assumptions about the rela-
-en the causal links in the model and
regularities, and they generate predic-
how people could reason about inter-
nd counterfactuals. They may well be
ith the way people learn about new
tions, though they may require addi-
raints or heuristics to achieve this. In
s that include a small number of vari-
produce correct predictions for both
nd adults’ reasoning. There seems lit-
or example, that people observe the
‘between observation and interven-
Bayes nets embody.
other side of the balance, there is very
nce that people observe the causal
ndition, the key ingredient in Bayes
ruction. All versions of Bayes nets
sence and absence of causal links to
nce and absence of statistical depen-
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dencies in the data. But participants’ reason-
ing with causal information doesn’t always agree
with predictions based on these dependencies.
Although we can interpret the results of these
experiments on the assumption that the partici-
pants are reasoning with Bayes nets that are dif-
ferent from the ones they are taught, there is cur-
rently little positive evidence that the Markov
principle constrains people’s causal reasoning.
‘And without the Markov principle, we're back to
a position not much different from ideas about
cognitive schemas, models, scripts, frames, or
theories that preceded Bayes nets.

Bayes nets are also oddly inarticulate as cog-
nitive representations. Proponents of Bayes nets
have generally been uninterested in the way in
which people express causal regularities, pre-
sumably because people’s talk about cause is
filtered through pragmatic channels, obscuring
their underlying beliefs. But, although this can
be true, it’s also the case that people’s causal
reasoning depends on whether a cause or set of
causes is necessary or sufficient, as the literature
on causal conditionals attests. Likewise, reason-
ing depends on the differences between inde-
pendent (“alternative”) and interactive (“addi-
tional”) causes. While we can derive information
of this sort from the underlying conditional
probabilities that Bayes nets capture, we can't
get them from the graphs themselves. Two
arrows running into an effect could equally rep-
resent two independent, individually sufficient
causes of that effect or two causes that are only
jointly sufficient. The same is true for contrib-
utory versus inhibitory causes. In addition, peo-
ple make a wealth of adverbial distinctions in
the way that causation comes about. They dis-
tinguish, for example, between pushings, shov-
ings, and thrustings in ways that don’t seem
recoverable from the bare networks or even
from their underlying conditional probabilities
or functional equations. These limits on express-
ibility may not be fundamental ones, but they do
lessen the appeal of Bayes nets as cognitive maps
of our causal environment.

To accord with the facts about human causal
thinking, we need a representation that's less
nerdy - less tied to statistical dependencies and
more discursive. This doesn’t mean that we
should jettison Bayes nets’ insights, especially
insights into the differences between interven-
tion and observation. But it does suggest that we
should be looking for a representation that bet-
ter highlights people’s talents in describing and
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reasoning about causation and downplays ties to
purely quantitative phenomena.

Notes

1

I'm grateful to Jonathan Adler, Russell Burnett,
Douglas Medin, Brian Scholl, and to undergrad-
uate and graduate students in courses on causal
reasoning at Northwestern for comments on this
paper.
Michotte (1963) is inconsistent on how to
understand these reports. On the one hand, he
emphasizes the phenomenal character of the
observers’ experiences: “Now the responses in
these conditions given by the subjects always
relate, of course, to the physical ‘world’...But
the physical ‘world’ in question here is no longer
the world of physical science, as revealed by mea-
suring instruments; it is the world of things, as
it appears to the subject on simple inspection,
his ‘phenomenal world’, disclosed in this case
by the indications which he gives as a human
‘recording instrument’. Thus, when he says that
A ‘pulls B’ or ‘pushes B’, he is referring to an
event occurring in a world which appears as
external to him, an event of which he thinks
himself simply a witness and which he is merely
describing” (p. 306). But one page later, on the
other hand, Michotte retreats to a position in
which statements about what an observer sees
are no more than abbreviations for what the
observer reports: “Throughout this book there
often occur expressions such as ‘what the sub-
ject sees’, or ‘the impression received by the sub-
ject’, and so on. These expressions are clearly
only abbreviations, and are used to make the text
less cumbersome. They in fact refer to the sub-
jects’ verbal responses and they therefore mean
‘what the subject says or asserts that he sees’ or
‘that of which the subject says or asserts that he
has an impression’, and so on” (p. 307, note 5,
empbhasis in the original in both these passages).
Fodor (2003: Ch. 3) argues that even if observers
directly perceive an event in the display, it's
likely to be a lower-level one like square x push-
ing another y (which is indeed what observers
report, according to Michotte) rather than
square x causing y to move. There’s no reason
to think, according to Fodor, that perceiving an
event like a pushing entails perceiving the caus-
ing. Although x pushes y may imply x causes y to
move, we may get the causing from the pushing
by inference rather than by direct perception.
This distinction may seem unimportant to inves-
tigators, who may be satisfied that at least one
type of causal interaction (pushing or launching)
is directly perceived, but it is a reminder that the
conclusions about direct perception have lim-
ited scope.

4  There is some debate about th

which infants are first able to pe
interactions as such. See Cohen
(1993) for the view that infants doy
the launching interactions as ca
to ten months. The exact age,
crucial for the issues addressed h
extent to which infants’ recognit
interactions changes with experie
tant. What's of interest in the pres
that infants appear to recognize
ing events later than linear ones:
For example, according to a methi
book by Pelham and Blanton (;
researchers who wish to underst
rely heavily on the framework
the 19th-century philosopher Joh:
(p. 63). Similarly, Cook and Cam
note, “A careful reading of chaptet:
will reveal how often a modified
canons is used to rule out identif
valid inference” (p. 19). Or, in mo
conditions necessary for arriving'&
were set forth in the nineteer
the philosopher John Stuart Mill
that causation can be inferred if s
follows an event, A, if X and A vary
if it can be shown that event A pro
For these conditions to be met, wha
the joint method of agreement a
must be used. In the joint method
then so will X, and if A does not 6
ther will X” (Elmes, Kantowitz, a;
1999: 103, emphasis in the origi
method is the third of Mill’s canor
regarded as superior to the method
but inferior to the method of diff
There is also a normative problem
Cheng 1997 argues). Since AP does
account the presence of other cause
a misleading index of the strengthio
ular cause. For example, if other ¢
bring about the effect, then AP f
cause will be systematically too.s
eral, measures of causal strength run
tive difficulties by ignoring the stru
causal system (e.g., the possible pre
founding factors). Glymour (2001
this problem affects not only AP
ditional AP, Rescorla-Wagner stren;
multiple regression coefficients, an
Chapman and Robbins (1990)
(1997) prove that under simplify
tions Rescorla and Wagner's (1972
associative conditioning reduces to
eral, however, the equivalence doe
Glymour 2001 citing earlier work
A prominent member of my own'f
declared that no graduate student
cognitive program should get a Ph.



stindied the Rescorla-Wagner model. So
hie idea: Suppose that a creature is learn-
ation between a set of conditioned stim-
,...,Cu(e.g, lights, tones, etc.} and an
itioned stimulus U; (e.g., shock). Then
1ge to the associative strength, AV, ofa
lar stimulus C; on any trial is a function
difference between the asymptotic level
gth that’s possible for the unconditioned
sand the sum of associative strengths for
-onditioned stimuli:
aifi (A — ZVid,
is the salience of cue C;, B; is the learn-
or U; (0 <@, B < 1), }; is the asymptotic
strength possible for Uj, and the sum is
Lcues in Cp, Cy,..., C, present on the
he asymptote A will have a high value (>
n-the unconditioned stimulus is present
wvalue (perhaps 0) when it is absent on
No change occurs to the strength of C; if
‘present on a trial (AV; = 0). The impor-
g to notice is that the change in strength
individual cue depends on the strength
thers present. See Shanks and Dickinson
for a discussion of the Rescorla-Wagner
and other learning models as applied to
udgments.
logists tend to see ANOVA methods
erior to correlational ones in isolating
se of some phenomenon. But as far as
tistics goes, there's no important differ-
ctween them, since ANOVA is a special
tultiple correlation/regression. The per-
difference between them is due to the
at psychologists use ANOVA to analyze
d experiments but use correlations to
observational ones. Manipulation does
vantages over passive observation for rea-
scussed in the following section.
on’s paradox” is not a true paradox but an
ic consequence of the fact that the differ-
tween each of two proportionsa/b — c¢/d
f— g/h can be positive (negative) while
regate difference (a +e)/(b+f) —(c+
h) can be negative (positive), as the
ers in Table 2 illustrate. Simpson (1951:
ointed out that this leaves “considerable
or paradox and error” in how we interpret
Wo-way interaction between the remaining
rs-(i.e., the two that don’t define the parti-
tween a-d and e-h). For example, should
i-that irradiation is positively or negatively
ed to the quality of fruit in Table 2?
' cases also may violate assumptions nec-
in deriving p, and, if so, lie outside the
in of the power theory (see Luhmann and
005).
also difficult to tell how much of the
ovement after interventions in Stevyers
{2003) is due to the extra trials rather than

i
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to the interventions themselves. That is, part of
participants’ increased ability to identify the cor-
rect causal structure may have been the result of
a larger amount of data and not to interventions
per se.

A variation on an example of Sloman’s (2005:
57-59) illustrates the same ambiguity. Suppose
peptic ulcers result either from bacterial infec-
tions of a certain sort or from taking too many
aspirin and similar drugs. Peptic ulcers, in turn,
cause burning pains in the gut. In this situa-
tion, we may be able to intervene on someone’s
ulcer by administering a drug — Grandma’s spe-
cial formula, in Sloman’s example ~ that cures
the ulcer and thereby relieves the pain. But what
should we conclude about whether the bacteria
or the aspirin continue to be present after the
intervention? The natural thing to say is that this
depends on how Grandma's formula works. If it
acts as a kind of barrier that protects the stomach
lining, then perhaps the presence of the bacte-
ria or the aspirin is unchanged. But if it works
by destroying the bacteria and neutralizing the
aspirin, then, of course, neither will exist after
the intervention. Sloman is careful to stipulate
that Grandma’s special formula “goes directly to
the ulcer, by-passing all normal causal pathways,
and heals it every time.” But how often do we
know in the case of actual interventions that they
route around all normal causal channels? Isn't
the more usual case one where the interven-
tion disrupts some causal paths but not others
and where it may be unclear how far upstream
in the causal chain the intervention takes
place?

The old way involved deducing causal relations
between individual events from general “cover-
ing” laws plus particular statements of fact (see
Hempel 1965).

Of course, a suppositional theory needs to be
worked out more carefully than can be done
here. In particular, the supposition can’t be such
as to block all modus tollens arguments that
entail the falsity of the conditional’s antecedent.
For a recent attempt to construct such a theory,
see Evans and Over (2004).

This isn’t to say there is no relation between
the causal Markov condition and the idea of
intervention. Hausman and Woodward (1999:
553) argue that “the independent disruptabil-
ity of each mechanism turns out to be the flip
side of the probabilistic independence of each
variable conditional on its direct causes from
everything other than its effects.” But their argu-
ment requires a number of strong assumptions
(each variable in the Bayes net must have unob-
served causes and these unobserved causes can
affect only one variable) that may not always
be true of the representations people have of
causal systems. See Cartwright (2001) for a
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general critique of the causal Markov condition,
and Cartwright (2002) for a specific critique of
Hausman and Woodward's “flip side” claim.

16 Morteza Dehghani and Rumen Iliev have sug-
gested factors like these in conversation.

17 In one promising account, Hiddleston (2005)
proposes a causal network theory of counter-
factuals that improves on Pearl (2000). Given
a causal network with variables A and C, we can
evaluate the truth of the counterfactual If A = a
then C = c by considering all minimally different
assignments of values to variables in the network
such that A = a. If C = cis true in all these min-
imal assignments, then so is If A = a then C = c.
As assignment is minimally different, roughly
speaking, if (a) it has as few variables as pos-
sible whose value is different from that in the
actual situation but all of whose parents have
the same values, and (b) among the variables
that are not effects of A, it has as many vari-
ables as possible whose values are the same as in
the actual situation and all of whose parents are
also the same. As Hiddleston notes, this theory
allows for backtracking counterfactuals such as
(13). It is unclear, however, whether this theory
can capture people’s intuitions about the truth
of (13)-(14) and their kin. Assume a model in
which turning in homework and instructor dili-
gence are both causes of getting a grade and in
which instructor diligence and the grade cause
discipline of the instructor. Then there are at
least two minimal models of (13)-(14) in which
Fred gets an F: In one of them, Fred does his
homework, the instructor is negligent, Fred gets
an F and the instructor is disciplined. In the
other, Fred forgets his homework, the instruc-
tor is diligent, Fred gets an F, and the instruc-
tor is not disciplined. Since Fred does his home-
work in one of these models but not in the other,
{13) is false, according to the theory. Similarly,
for (14). As already noted, however, people’s
judgment of (13)-(14) may depend on how eas-
ily they can imagine the change to Fred’s grade
being brought about by lack of homework versus
instructor negligence.
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