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SUMMARY

The organization of human brain networks can be
measured by capturing correlated brain activity
with fMRI. There is considerable interest in under-
standing how brain networks vary across individuals
or neuropsychiatric populations or are altered during
the performance of specific behaviors. However, the
plausibility and validity of such measurements is
dependent on the extent to which functional net-
works are stable over time or are state dependent.
We analyzed data from nine high-quality, highly
sampled individuals to parse the magnitude and
anatomical distribution of network variability across
subjects, sessions, and tasks. Critically, we find
that functional networks are dominated by common
organizational principles and stable individual fea-
tures, with substantially more modest contributions
from task-state and day-to-day variability. Sources
of variation were differentially distributed across
the brain and differentially linked to intrinsic and
task-evoked sources. We conclude that functional
networks are suited to measuring stable individual
characteristics, suggesting utility in personalized
medicine.

INTRODUCTION

Many long-standing questions in neuroscience, psychology, and

medicine center on understanding the neural mechanisms that
underlie variability in behavior, cognition, and psychopathology.

A common approach to addressing these questions is to study

the organization of human brain networks using fMRI, where cor-

relations in ongoing activity can be used to capture ‘‘functional

networks,’’ groups of regions that support functions ranging

from motor processing to top-down attention (Figure 1A; Biswal

et al., 1995; Corbetta and Shulman, 2002; Dosenbach et al.,

2007). Our ability to map functional networks in the human brain

has advanced dramatically in the past decade, with precise

mapping now possible both in large groups (Power et al.,

2011; Yeo et al., 2011) and in individuals (Braga and Buckner,

2017; Gordon et al., 2017c; Laumann et al., 2015).

These approaches have been eagerly adopted by studies

searching for insights into how brain networks reorganize with

brain damage and disease (Baldassarre et al., 2016; Bassett

and Bullmore, 2009; Gratton et al., 2012; Menon, 2011; Sheffield

and Barch, 2016; Stam, 2014), differ across individuals (Finn

et al., 2015; Gordon et al., 2017a; Gordon et al., 2017b, 2017c;

Miranda-Dominguez et al., 2014; Mueller et al., 2013; Wang

et al., 2015), change across the lifespan (Chan et al., 2014; Dos-

enbach et al., 2010; Satterthwaite et al., 2013a), and respond to

different cognitive demands (Betti et al., 2013; Cole et al., 2014;

Gratton et al., 2016; Krienen et al., 2014; Shine et al., 2016; Shirer

et al., 2012).

In the context of these investigations, researchers often

implicitly adopt one of two distinct assumptions concerning

the nature of functional brain networks. One view is that func-

tional networks mirror cognitive, perceptual, and motor pro-

cesses, reconfiguring substantially with ongoing context, task

demands, moods, and even fleeting thoughts. From this

perspective, functional brain networks reflect dynamic activity

flowing across a large set of possible network trajectories that

track ongoing processing, and thus should be amenable to
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Figure 1. Scales of Variability in Functional

Brain Networks

(A and B) Functional brain networks (A) may vary

along different timescales (B), ranging from com-

plete stability (with differences only attributable to

sampling variability and/or measurement noise) to

varying from moment-to-moment with ongoing

thoughts and processes. Intermediate to these

two levels, functional networks may vary on the

order of minutes depending on brain state

(arousal, task engagement), more slowly over the

course of the day (e.g., with circadian rhythms),

over the course of weeks or years (e.g., with

extensive experience in a task), or they may vary

across individuals.

(C) If functional brain networks are stable across

people (‘‘group,’’ illustrated in the schematic to the

right), high similarity would be expected among all

measurements, even when taken from different

individuals, sessions, and tasks, leading to high

similarity throughout the matrix. If networks are

dominated by individual variability, then high

similarity would be expected of networks from the

same individual (squares along the diagonal), with

low similarity among networks from different in-

dividuals (middle right). Alternatively, networks

that vary substantially across sessions or task

states would show similarity limited to the same

session (middle left) or task (left). These different

sources of variability inform our understanding of

the neurobiological underpinnings of functional

brain networks and how they can be used to

address psychological and neuropsychiatric

questions concerning brain function.

See also Figure S1A.
‘‘mind reading’’ applications. But, a corollary of this perspective

is that functional networks would be far less useful for most clin-

ical applications, as they would be strongly modified by the spe-

cific context under which they were measured; e.g., they could

vary substantially based on the comfort of waiting rooms in a

testing center or mannerisms of a technician, rather than the un-

derlying disease. The alternative view is that functional networks

are fundamentally stable, such that an fMRI scan can be used to

measure network properties that are informative about a given

person’s stable traits (such as their disease status or personality)

regardless of that person’s thoughts, mood, or even behavioral

task during the scan. In this view, functional networks are under-

stood as primarily determined by structural connections that

maintain a functionally stable correlation structure linked to

long-term histories of co-activations between areas. If true,

this would suggest that functional networks can be used for

measuring individual personality traits and tracking disease,

with applications in personalized medicine, but would have

less utility for measuring cognitive content.

Given these opposing views, and their consequent implica-

tions for future applications of fMRI, it is important to quantify

to what extent brain networks are stable or vary across time (Fig-

ure 1B). Recent work has provided evidence that functional brain

networks vary across individuals, sessions, and task states (Finn

et al., 2015; Geerligs et al., 2015; Gordon et al., 2017a, 2017b,
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2017c; Laumann et al., 2015; Miranda-Dominguez et al., 2014;

Mueller et al., 2013; Noble et al., 2017; Pannunzi et al., 2017;

Xie et al., 2017). While some reports argue that brain networks

are largely stable with negligible variation in networks over time

during rest (Laumann et al., 2017) and subtle modifications dur-

ing tasks (Cole et al., 2014; Gratton et al., 2016), other reports

emphasize variability of functional networks (Allen et al., 2014;

Calhoun et al., 2014; Hutchison et al., 2013) and the sensitivity

of these networks to ongoing cognition (Gonzalez-Castillo

et al., 2015; Shine et al., 2016; Shirer et al., 2012). These diver-

gent accounts may arise because no study, to date, has directly

contrasted the magnitude of these diverse effects. Furthermore,

most previous studies have had low amounts of data per person,

limiting the reliability of measurements (Laumann et al., 2015)

and the ability to differentiate variability due to limitations in

data quantity from individual, state, or session effects.

Here, we leverage theMidnight ScanClub (MSC) dataset (Gor-

don et al., 2017c), which is particularly well suited to address this

question, given that it includes more than 10 hours of fMRI data

from 10 highly sampled individuals across 10 different days and

5 different task states. Thus, we have sufficient data per subject,

session, and task to simultaneously examine the relative contri-

bution of (1) common (group-level) organizational principles

of brain networks, (2) individually specific elements of network

architecture, (3) session-dependent fluctuations in functional



A B

C

Figure 2. Multidimensional Scaling Plots of Functional Networks from Different Individuals, Tasks, and Sessions

(A–C) In these plots, each point represents a single functional network, plotted in a multidimensional space based on the similarity among networks. In the left

panel, points are colored based on the participant identity of each functional network. In the right panel, points are colored based on task. (A) The first two

dimensions were dominated by subject clustering, suggesting identity contributes most to functional network variance (note clustering by color in left plots).

(B and C) Task-level clustering was captured at higher dimensions (note clustering by color in dimensions 8 and 9, B, and 10 and 11, C). See also Figure S1B.
networks that vary on the order of days, and (4) state-dependent

variability that varies on the order of minutes during different

tasks (Figure 1C). We contrast the relative magnitude of each

of these effects, examine how they are distributed across the

brain, and address the contribution of intrinsic and task-evoked

factors.

RESULTS

Overview
The MSC dataset (Gordon et al., 2017c) includes data from ten

individuals with ten separate fMRI sessions. One individual

was excluded due to relatively high levels of motion (see STAR

Methods). In each session, fMRI runs in five states were

completed: rest (eyes open, no task) and four tasks (visual coher-

ence, semantic, memory, and motor). Functional brain networks

were measured via time-series correlations among 333 cortical

regions separately for each individual, task state, and session

(Figure S1A). We then examined the magnitude and anatomical

distribution of group, individual, session, and task variations in

these functional networks (see below). For the primary analyses

reported here, we grouped data from 5 sessions into a single

split-half session group to increase the total amount of data for

each estimate, as large amounts of data are needed for reliable

functional network estimates (Gordon et al., 2017c; Laumann

et al., 2015). We also report results separated by each of the

10 sessions in the Supplemental Information.

The variability of functional networks was investigated using a

combination of approaches. (1) We examined data-driven clus-

tering of functional networks from each subject, session, and

task (Figure 2). (2) We quantified the similarity of these functional

networks matched on different properties (subject, session,

task; Figure 3). Network similarity was used to estimate the

magnitude of each ‘‘effect’’ (e.g., to what extent networks from

the same individual are more similar than networks from different

individuals). (3) We examined the anatomical distribution of each

effect, both at the system (Figure 4) and region (Figure 5) levels.
(4) We also examined the variance explained by each effect in

single network connections (Figure 6). Finally, (5) we asked

whether these effects were related to intrinsic network architec-

ture (i.e., resting-state) or extrinsic task-evoked signals (i.e., ac-

tivations during tasks; Figure 7). These analyses present conver-

gent evidence for strong functional network stability (group

and individual-dependent effects), moderate state-dependence,

and minor session-dependent effects (that are likely related to

data quantity). Furthermore, these effects show distinct anatom-

ical distributions and relationships to intrinsic and extrinsic

factors.

Most fMRI Network Variance Is Due to Differences
across Individuals, Not Tasks or Sessions
We examined variation in functional networks in a data-driven

manner using multidimensional scaling. In this approach, func-

tional networks measured from each individual, task, and

session are plotted in multidimensional space based on their

similarity (Euclidean distance; similar results are obtained with

correlation-based distances). As can be seen (Figure 2), most

functional network clustering in the first two dimensions is driven

by participant identity. Only at higher dimensions does clustering

by task state appear. Session-dependent clustering was not

easily discernable. Principal-component analysis demonstrates

that dimensions 1–6 (dominated by subject clustering) account

for a total of 48.8% of variation across functional networks

(7.0%–10.1% each; see Figure S1B). Dimensions 7–12 (where

clustering by task state appeared) account for a total of 19.0%

of variance (1.4%–6.1% each). These findings indicate that indi-

vidual variability accounts for the majority of variation between

functional networks, with substantially smaller effects due to

task or session.

Functional Networks Are Largely Stable with Moderate
Modulations Due to Task State
We quantified similarity among functional networks for each

effect directly by taking the correlation between all pairs of
Neuron 98, 439–452, April 18, 2018 441



Figure 3. Quantification of the Similarity in Functional Brain Networks

(A) A similarity matrix, where every cell represents the similarity between a pair of functional networks. The matrix is organized first by individual (marked by solid

black lines), then by task (colors along axes), and finally by sessions (indicated as dashed lines; here each split-half ‘‘session’’ represents data from 5 sessions;

see Figure S2C for the similarity matrix from separated 10 sessions).

(B) Summary of similarity for networks matched on each factor, with bars of the average similarity for (1) networks across the group, from different individuals,

tasks, and sessions; (2) networks from the same task but different individuals (task); (3) networks from the same individual but different sessions or task states

(individual; diagonal in A); (4) networks from the same individual and session (indiv & session); or (5) networks from the same individual and task (indiv & task). The

relative effects of each factor are highlighted in the black portion of each bar. Individual and task effects represent the added similarity that networks matched on

either of these properties have relative to unmatched (group) networks (above the red baseline); indiv & session and indiv & task effects are the added similarity

that these effects show relative to networks matched on individual identity alone (again, black portion of each bar relative to the new red baseline). Data are

represented as mean ± SEM, ***p(FDR) < 0.001.

(C) To contrast the relative magnitudes of these effects, we plot the relative effect magnitudes (black portions of the bars in B), as a proportion of the total effects.

Group and individual-specific effects are largest, each �35%–40% of the total network similarity effects. Moderate individual and task interactions are also

evident. Minor cross-subject task and individual and session effects were present (�5% of the total). Similar results were seen for different individuals and tasks

and for matched data quantities (Figures S2A and S2B) or when non-regressed task time series are used (Figures S3A and S3B).
functional networks (i.e., the correlation of the upper triangles of

correlation matrices; Figure 3).

Functional networks from different individuals, tasks, and

sessions show substantial similarity (mean: z(r) = 0.56). This

indicates all functional networks (the ‘‘group,’’ background

in Figure 3A) share basic structure. Networks from the same

individual (i.e., squares on the diagonal in Figure 3A) were

even more similar to each other, with an added effect

of z(r) = 0.52 over the group effect, demonstrating a large

influence of individual identity on functional networks.

Thus, group and individual effects are of approximately equal

magnitude.

Networks measured from the same individual and task (indi-

vidual-specific task effects, mini-blocks along the diagonal

within individual squares in Figure 3A) are also moderately

more similar to one another than networks that are from the

same individual but different tasks (an added similarity of z(r) =

0.26). This effect is approximately half as large as the individual

or group effects. Cross-subject task effects (i.e., similarity

among networks from the same task but different individuals)

were subtle and difficult to discern but still significantly more
442 Neuron 98, 439–452, April 18, 2018
similar than the group baseline (added similarity of z(r) = 0.04).

Thus, task states modified functional networks, but these mod-

ifications largely varied by individual. Finally, networks from the

same individual and session (indexing individual-specific ses-

sion effects) were only slightly but significantly more similar

than networks from the same individual in different sessions

(added similarity of z(r) = 0.05).

All individual, session, and task effects were significantly

different from their baselines (p(false discovery rate [FDR]) <

0.001). The relative magnitude of these effects was consistent

across single individuals and tasks and when data quantities

are matched (Figures S2A and S2B). Furthermore, similar indi-

vidual, task, and session effects were seen when each session

was examined separately, instead of in a split-half group (Figures

S2C–S2E). Finally, similar results were obtained when complete

task time series (rather than residuals after removing evoked

task effects) were used in estimating task functional networks

(Figures S3A and S3B). Jointly, these findings indicate that

functional brain networks are dominated by stable group and

individual-dependent factors, with only moderate state-based

modulations. Session-dependent variation was minimal relative



Figure 4. Individual, Task, and Session-

Dependent Variation across Brain Systems

(A) Functional network similarity of top-down

control (CO, FP, DAN, VAN, and Sal) and sensori-

motor processing (Vis, SM, SM-lat, and Aud) sys-

tems (see anatomical distribution in bottommiddle

panel). Control systems show a stronger diagonal

(similarity among networks from the same indi-

vidual) and weaker off diagonals (similarity across

subjects) relative to processing systems.

(B) Boxplots depict the average similarity for sys-

tems matched on each factor. Control systems

show greater individual effects, whereas sensori-

motor systems show greater cross-subject group

and task effects (control versus processing, two-

sided t tests, **p(FDR) < 0.01).

(C) As a comparison, we summarize the normal-

ized relative effects for each system type (as in

Figure 3C). Note again the larger individual effects

in control systems, and larger group and effects in

processing systems.
to the other effects, especially when data quantity per session

was maximized.

Individual, Session, and Task Effects Differ by
Anatomical Location
Next, we examined whether individual, task, and session effects

varied by functional system and regional location.

System

First, we separately examined the magnitude of each effect

for systems involved in top-down control (cinguloopercular, fron-

toparietal, salience, dorsal attention, and ventral attention) and

sensorimotor processing (visual, auditory, somatomotor, and

somatomotor lateral; Figure 4). Effects of individual identity

were stronger in control than processing systems and cross-

subject effects were stronger in processing than control systems

(all p(FDR) < 0.01).

Region

Group, individual, task, and session effects had different spatial

distributions across the brain (shown in Figure 5 as the relative

normalized effect magnitude per parcel). Group factors had a

large influence on parcels in the default mode and sensorimotor

regions. Individual effects were most pronounced in frontoparie-

tal and dorsal attention regions. Individual-specific task effects

were strongest in a combination of control, default, and higher-
level visual and motor areas, suggesting

that a combination of control and pro-

cessing system modulations contribute

to individual-specific task modulations,

despite similar overall performance on

tasks across individuals.

At a different magnitude (Figure S3C),

we can also see the distribution of

cross-subject task effects. These were

strongest in early visual and motor re-

gions. Individual-specific session effects

(Figure S3C) were strongest in areas

with low fMRI signal, as well as insular
and primary visual and motor regions. This pattern is suggestive

of variations in fMRI signal to noise and participant drowsiness

(Laumann et al., 2015). In summary, the anatomical distribution

and magnitude of group, individual, session, and task-specific

effects were quite different, suggesting that varied network-level

mechanisms likely underlie each effect.

Variation of Single Network Edges Is Explained by
Individual, Task State, and Their Interactions
To formally contrast these different sources of variation, we used

a mixed-effects ANOVA to model each parcel-to-parcel func-

tional correlation (network edge) with factors of participant iden-

tity, session, task state, and their interactions. We found that this

simple model accounted for the vast majority of the variance

in single connections (Figure 6; variance explained per edge,

R2 mean across edges = 0.89, SD = 0.06, max = 0.99), especially

within and among control and default systems (Figure S4A).

When examined separately (Figures 6B and S4B–S4D), partici-

pant identity accounted for the majority of variance across many

edges (individual u2, mean = 0.50, SD = 0.18, max = 0.92), espe-

cially within and between the default and control systems.

Task and task-by-individual interactions accounted for a

small tomoderate amount of variance across amore limited distri-

bution of edges (task u2, mean = 0.05, SD = 0.06, max = 0.55;
Neuron 98, 439–452, April 18, 2018 443



Figure 5. Individual, Task, and Session Effects across Brain Regions

The extent to which functional correlations for individual parcels are influenced by each effect (group, individual, task, individual and task, and individual and

session) is examined by plotting the relative normalized effect magnitudes for each parcel (see Figure 3C). See Figure S3C for task and session effects on a

narrower color scale. Individual, task, and session effects differed in distribution, suggesting the presence of differing underlying mechanisms.
task3 individualu2,mean=0.09,SD=0.07,max=0.48), primarily

within and among sensorimotor and control systems. Session and

session-by-individual interactions accounted for only a small

portion of the variance (session u2, mean = 0.003, SD = 0.01,

max = 0.19; session 3 individual u2, mean = 0.02, SD = 0.03,

max = 0.27). The session 3 individual interaction was slightly

higher in analyses in which the 10 sessions were analyzed sepa-

rately (10-session 3 individual u2, mean = 0.05, SD = 0.04,

max=0.29; FiguresS5AandS5B; note, however, the substantially

lower variance explained in this version of analyses due to the

increased contribution of sampling error; Figure S5A). Thus, with

sufficient data, a simple model including participant identity and

task state can account for most of the variability in measurements

of single functional network edges.

Furthermore, we find that the addition of data-quality metrics

(mean framewise displacement [FD]) for each condition does not

alter the variance explained by the model (Figures S5C–S5E).

This finding suggests that our rigorous preprocessing pipeline

was able to address motion artifacts and that data quality does

notcontribute to the large individual variabilitypresent in this study.

Relationship to Intrinsic and Evoked Factors
Finally, we examined how each source of variance was related

to intrinsic (resting-state architecture) and evoked (task-activa-

tions) factors.

Removal of Intrinsic Network Structure Enhances the

Relative Contribution of Transient Effects

We examined how intrinsic network structure related to variation

in functional networks by measuring network similarity after sub-

tracting resting state fromeach task network estimate. This oper-

ation removes variability due to differences in intrinsic resting

network organization (as well as parcel anatomy) between indi-

viduals and is how task-specific functional networks are often
444 Neuron 98, 439–452, April 18, 2018
isolated (Betti et al., 2013; Cole et al., 2014; Gratton et al.,

2016). Here, we ask to what extent removing intrinsic structure

suppresses stable and enhances transient effects.

As expected, we find that removing resting structure strongly

reduces stable effects (Figures 7A and 7B); on average, group

similarity was reduced 86% (SEM = 1%) and individual similarity

was reduced 73% (SEM = 4%). This indicates that a substantial

portion of group and individual-specific effects were carried

by intrinsic network organization and/or parcel anatomy. Intrigu-

ingly, some small group (z(r) = 0.08) andmoderate individual sim-

ilarity (added z(r) = 0.21 relative to group, both p < 0.001) re-

mains, perhaps indexing task-general network effects. Instead,

individual-specific task effects (z(r) = 0.19) are preserved and in-

dividual-specific session similarity (z(r) = 0.22) is enhanced.

Thus, the relative magnitudes of these effects, especially for in-

dividual and session, are greatly increased once intrinsic struc-

ture is accounted for (compare Figure 7B, right, with Figure 3C).

These findings indicate that removal of intrinsic network struc-

ture enhances the relative contribution of session and task-

dependent effects in functional networks.

Interestingly, after removing rest, network similarity is higher

for control than processing systems for all types of effects,

including group and task (Figure S6A; p(FDR) < 0.05 for all ef-

fects). Thus, cross-subject effects switch from being strongest

in processing systems to strongest in control systems. This

finding signals the importance of accounting for intrinsic struc-

ture when studying control functions and their roles in tasks.

Evoked Signals Exhibit Low Stability and High

Dependence on Task State

We also asked whether the same patterns of variability are

observable in fMRI task activations. It is natural to assume that

evoked signals should be strongly modulated by task state, given

that task-evoked fMRI measures responses to experimental task
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Figure 6. Modeling Variability of Single

Functional Network Edges

(A) Variance in single edges was modeled with

factors of individual, task state, and session, and

their interactions, shown in a region-by-region

correlation matrix (left). This simple model ex-

plained most of the variance in edges, with

particularly high rates of variance explained within

and among control and default systems (Fig-

ure S4A). Variance explained per parcel, averaged

over edges (right).

(B) Variance explained (u2) for each factor (top,

averaged over edges for a parcel; bottom, variance

explained for each edge in the functional network

matrix); individual identity explains the majority of

the variance. Remaining variance is primarily ex-

plained by task and task X individual interactions

(particularly in higher-level processing and control

regions). Session related variance was minor, but

slightly higher in the analysis conducted on 10

separated sessions rather than split-half (Figures

S5A and S5B).
manipulations. However,many findings suggest that task-evoked

(first order) signals are intimately related to (second order) func-

tional connectivity measurements, with observations that net-

works formed from co-activations during tasks strongly resemble

functional networks from spontaneous firing at rest (Smith et al.,

2009). This relationship is proposed to stem from (1) evoked sig-

nals shaping intrinsic network structure historically, as repeated

co-activations may mediate stronger Hebbian-like connections

between regions and thereby stronger spontaneous correlations

(Dosenbach et al., 2007), and/or (2) evoked signals directly

contributing to functional network measurements, as activations

‘‘flow’’ through a network, influencing correlation structure (Cole

et al., 2016). Thus, this logic suggests that task-evoked signals

may be strongly related to functional networks and will show

related patterns of variability.
To address this question, we con-

ducted the same form of analyses for ac-

tivations from each individual, task, and

session (see STAR Methods; for task

activations, we examined percent signal

change across all conditions and again

grouped sessions into split halves to in-

crease data quantity). Interestingly, the

variability profile of activation maps is

very different from the similarity among

functional networks (Figures 7B and

7C). There is lower similarity among acti-

vation maps across individuals (diago-

nal), and much of this is dominated

by similarity in activations among the

same task from a given individual (mini-

squares along the diagonal). Instead,

there is stronger similarity in activations

from the same task across individuals

(note vertical/horizontal lines; the motor

task stands out as most distinct task).
See Figures S6D–S6F for extended analyses and modeling by

parcel.

These findings indicate that evoked signals have a distinct

profile of variance along the state-to-stable continuum. Evoked

signals likely contribute little to stable individual-dependent vari-

ability but more strongly to task and individual-specific task vari-

ability. Jointly, these results indicate that functional network

measures are better suited for individual-level identification

than tracking ongoing cognitive processes, which are better

quantified via evoked measurements.

DISCUSSION

In this study, we asked how functional brain networks vary

over different timescales. We examined the magnitude and
Neuron 98, 439–452, April 18, 2018 445



Figure 7. Relationship of Variability to Intrinsic and Task-Evoked Factors

(A) The similarity among functional networks during tasks is depicted, after subtracting resting intrinsic structure from each functional network matrix. Notably,

similarity values are reduced, but block structure (i.e., individual-specific effects) remains along the diagonal. Mini-blocks along the diagonal (indicating indi-

vidual-specific task effects), and off-diagonal lines (indicating session effects) are now more clearly evident.

(B) The similarity for networks matched on different factors (black boxplots). As suggested in (A), network similarity was strongly reduced relative to the original

networks (light gray boxplots, Figure 3; for comparison, light-gray bars were calculated without the rest condition). However, individual and session, individual

and task, and cross-subject task effects remain and are enhanced in relative magnitude (right). See Figures S6A–S6C for additional comparisons of functional

networks after subtracting rest.

(C) Similarity of task activation maps across individuals, sessions, and tasks. Note that unlike in (A) and Figure 3, there is reduced block structure along the

diagonal, primarily dominated bymini-blocks indicating a high similarity of task-specific activationmapswithin an individual. Themotor task is most different from

others in its activation pattern.

(D) Quantification of the similarity of activation maps across different factors (black). Unlike the similarity of the original functional networks (light gray, again

without rest for comparison), task- and individual and task effects are larger, with only moderate individual and group effects. See Figures S6D–S6F for additional

comparisons and modeling analyses.
anatomical distribution of individual, session, and state vari-

ability in the Midnight Scan Club dataset, which contains sub-

stantial amounts of data for nine high-quality subjects, from

10 days, in five states, allowing us to simultaneously contrast

the influence of these factors. We find that functional net-

works are primarily stable, with moderate state-based modula-

tions that varied largely across individuals. With large amounts

of data, session-dependent variability was minor. These forms

of variance were distributed differently across the brain,

with individual variability strongest in control systems and

state- and session-dependent variability stronger in processing
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systems. Finally, intrinsic resting structure and evoked

signal variability were linked to stable and state-dependent

variability, respectively. These observations have conse-

quences for research and medical applications of brain

network mapping, as they indicate that (1) functional networks

are best suited to measuring stable characteristics of indi-

viduals; (2) an individual’s state also moderately influences

network organization, suggesting that state-changes should

be accounted for in network comparisons; and (3) session-

dependent variation can be minimized with large amounts

of data.



Functional Brain Networks Are Largely Stable
Our findings suggest robust contributions from both common

organizational principles and stable variationbetween individuals

to functional brain networks. These findings indicate that the

majority of functional network organization arises from stable

factors, such as genetics, structural connections, and long-

term histories of co-activation among regions, rather than more

transient factors, such as ongoing cognition or day-to-day

fluctuations.

The large subject-level effects in functional networks high-

lights the importance of individualized approaches for studying

properties of brain organization. Large amounts of high-quality

data are needed to enable precise measurement of functional

networks (Braga and Buckner, 2017; Gordon et al., 2017c; Lau-

mann et al., 2015) and tease apart true network differences from

sampling variability, motion, or other artifacts (Laumann et al.,

2017; Power et al., 2012). Individual-specific effects on func-

tional networks (also reported by Finn et al., 2015; Gordon

et al., 2017a, 2017b, 2017c; Laumann et al., 2015; Miranda-

Dominguez et al., 2014; Mueller et al., 2013) are likely driven

by a combination of functional and anatomical variability. The

anatomical location of brain areas may be shifted, expanded,

or contracted across individuals (Gordon et al., 2017b), leading

to consistent alterations in network estimates, or variation may

exist in the functional correlation magnitudes themselves. While

it is difficult to tease apart structural and functional contributions

to individual variability, previous work suggests that gross

anatomical misalignment does not contribute to the majority of

individual differences in functional networks (Gordon et al.,

2017b). Furthermore, examining the similarity of networks

composed of individually optimized, rather than group, parcels

(matched at the network level) only slightly diminishes individual

effects in favor of group similarity (Figure S7). This observation

suggests that individual effects do not arise entirely from

differences in the anatomical distribution of networks across in-

dividuals but may reflect differences across individuals in the

magnitude of connectivity within and between networks. Future

work adopting hyper-alignment (Guntupalli et al., 2016; Guntu-

palli and Haxby, 2017) or related techniques may help to clarify

the contribution of individual differences in spatial mapping

from differences in connectivity magnitude.

What is additionally clear from this report is that a great deal of

functional network architecture is consistent across individuals;

indeed, functional networks can largely be described as varia-

tions on a central theme. This robust group effect may underlie

the success of past group approaches in the study of functional

brain networks (Power et al., 2011; Yeo et al., 2011). However,

our findings also suggest that a group description, alone, will

fall short of describing functional brain networks at a level of pre-

cision that may be most impactful clinically.

Furthermore, group and individual effects were localized

differently; group effects were strongest in processing (e.g.,

sensorimotor) regions whereas individual effects were most

prominent in control, especially frontoparietal regions, consis-

tent with past reports (Finn et al., 2015; Gordon et al., 2017b;

Miranda-Dominguez et al., 2014; Mueller et al., 2013). This sug-

gests that individual-specific measurements may be especially

important in applications targeting these high-level systems
and their functions. The default mode (DMN), in this experiment,

appears intermediate to control and processing systems; it ex-

hibits high group similarity but intermediate individual-level ef-

fects. These findings and other numerous results linking the

DMN to de-activations during most tasks, unlike either control

or processing systems (Raichle et al., 2001; Shulman et al.,

1997), but with activations proportional to task load like control

systems (McKiernan et al., 2003; Singh and Fawcett, 2008) and

with peripheral position in network graphs like processing sys-

tems (Gratton et al., 2016; Power et al., 2013), suggest that the

DMN does not neatly fall into either control or processing

categories.

Task States Moderately Modify Networks, and
Modulations Are Largely Individual-Specific
Although functional brain networks are primarily characterized

by stability, we also found evidence that task states modify brain

networks. Intriguingly, the majority of task modulations varied by

individual; common task modulations (i.e., task-specific network

changes consistent across subjects) were subtle, but individual-

specific task effects were about half of the size of individual

variability alone, a moderate influence on functional network

measurements.

These findings provide context to previous reports of subtle

differences in functional networks seen in different tasks across

subjects (Cole et al., 2014; Gratton et al., 2016; Krienen et al.,

2014). Task states clearly influence functional networks, but

our results demonstrate that cross-subject modulations are rela-

tively small (�5%). Thus, detection of common task effects will

likely require large amounts of high-quality data (e.g., >20 min,

as in Gratton et al., 2016), along with targeted removal of the

substantially larger stable effects (e.g., by removing intrinsic

structure; Figure 7; Betti et al., 2013; Cole et al., 2014; Gratton

et al., 2016; see also Xie et al., 2017).

The larger individual-specific task effects on brain networks

(�5% cross-subject versus �20% individual specific) empha-

size that individual-specific analyses may be a more productive

avenue for investigating task-based modulations of brain net-

works. These findings expand upon previous studies (Geerligs

et al., 2015; Xie et al., 2017), which have suggested that task

and individual variability interact. Notably, we found large

individual differences in task effects even though many of the

tasks were fairly simple (e.g., move a hand, categorize faces

as male or female, identify if dots are arranged concentrically)

with high levels of performance across all participants. These

individual by task interactions remained present after the

removal of intrinsic network structure, indicating that they do

not arise linearly from intrinsic functional/anatomical differences

between regions. One possibility is that they index the presence

of multiple neural or cognitive strategies for completing even

simple tasks (e.g., how hard to squeeze a hand; Fox et al.,

2007; Pearce and Moran, 2012). While the magnitude of task

by individual interactions differed by task, as predicted by

Finn et al. (2017), inter-task differences were minor compared

to the overall size of the individual-specific task effect and at

least partly dependent on data quantity/quality (Figure S2);

future work will be needed to determine the importance of these

differences.
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With Sufficient Data, Functional Networks Exhibit Low
Variability across Days
Recent work has brought attention to the contribution of day-to-

day variability in functional brain networks (Noble et al., 2017;

Pannunzi et al., 2017). We also find significant session variability,

yet these effects were small relative to group, individual, or

task differences, whether examined in split-half sessions or by

10-session groupings. The small session-dependent variability

is at least partly attributable to the large quantity of data present

in this study, which decreases the extent of variability due to

sampling error (Laumann et al., 2015). Importantly, unlike previ-

ous studies (Gordon et al., 2017c; Laumann et al., 2015) that

examined session effects by looking at variance across runs

in different sessions, we examined session effects that were

consistent across all scans within a given session, such that

random sampling noise would be less likely to contribute to

our estimates. Therefore, our estimates of session variability

may be lower than others that do not separate consistent ses-

sion variability from random noise. Finally, scan times were pre-

cisely controlled in the present study (12–2 a.m.), decreasing

variability due to circadian factors. Thus, session-dependent

effects are likely minor contributors to variability in precisely phe-

notyped data (Gordon et al., 2017c) but may have larger contri-

butions in datasets with shorter quantities of data per session or

more variable times of acquisition.

Of note, session variability was consistently smaller than

variability across tasks in individuals, and these two forms of

variability had different anatomical distributions. The topography

of session variability (in low-signal regions as well as motor,

visual, and cinguloopercular systems) resembles previous re-

ports (Gordon et al., 2017c; Laumann et al., 2015) and at least

partly overlaps with effects of drowsiness (Laumann et al.,

2017; Mitra et al., 2015; Tagliazucchi and Laufs, 2014), suggest-

ing that individual differences in drowsiness across sessions

may contribute. Furthermore, session-dependent variability

could also be attributable to variability in data acquisition, fMRI

signal, or other systematic biases on data quality.

The Majority of Variability of Single Functional
Connections Is Related to Individual and Task
Our study demonstrates that a simple model, with factors of in-

dividual, task, session, and their interactions, accounts for the

vast majority of the variance in functional networks, even in sin-

gle functional connections—averaging at 89% of variance ex-

plained. This finding is exciting, as it predicts that given sufficient

data, we may be able to robustly measure single network edges,

and estimate their likely contribution from more temporary (i.e.,

task state) and stable (i.e., individual) factors. This may be a fruit-

ful avenue to pursue in medical applications of the technique.

Consistent with other findings here, variance in single functional

connections was largely attributable to individual variability, with

moderate contributions of task state.

Evoked Signals Are Less Reflective of Stable Brain
Features than Functional Connectivity
In contrast to the high stability of functional networks, task acti-

vations show diminished stability (i.e., across individuals and the

group) and increased task dependence. These findings indicate
448 Neuron 98, 439–452, April 18, 2018
distinct patterns of variation in first- (activation) and second-

order (correlation) fMRI signals. At first blush, this may not be

surprising, given that activation signals measure task-locked

effects. However, onemight have predicted that individual differ-

ences in network architecture would map onto individual differ-

ences in task activations (e.g., as shown in Gordon et al.,

2017c; Smith et al., 2009; Tavor et al., 2016), and, thereby,

task activations would also exhibit robust individual differences

similar to functional networks. Our findings suggest that these

two measures, while related, may not correspond simply (Grat-

ton et al., 2016).

One possibility is that evoked signals show higher task effects

than functional connectivity because they are compared with a

baseline condition. However, subtracting the intrinsic resting

baseline from task functional networks to isolate task-specific

signals does not augment transient task effects in functional net-

works to the level seen in activations (compare Figure 7D to

Figure 7B).

Removal of Intrinsic Signals Emphasizes Transient
Effects
Studies investigating how functional networks respond to tran-

sient events, such as tasks or ongoing cognition, often attempt

to isolate these features by subtracting intrinsic resting-state

structure from task networks to produce task-specific network

measurements (Cole et al., 2014; Gratton et al., 2016). We exam-

ined how this operation affected variability in functional net-

works. Subtraction of intrinsic network architecture decreased

group and individual effects (85% and 69%, respectively) while

relatively preserving or enhancing state- and session-dependent

variability. Thus, consistent with past endeavors, intrinsic signal

removal may help to uncover more transient functional network

signals. However, as noted above, this operation still falls short

of producing task effects of the magnitude seen with evoked

measures. Furthermore, neither group nor individual-specific

similarity was fully removed with rest subtraction, suggesting

the presence of nonspecific task-general states (i.e., effects

that are commonly found within/across individuals in all tasks,

but not rest, and thus remain after rest subtraction; Cole et al.,

2014; Gratton et al., 2016).

Spanning from States to Stability in Functional Brain
Networks
As detailed above, this study contrasts the effects of session,

task, and individual variability on functional brain networks. Pre-

viouswork fromour lab (Laumann et al., 2017) has also examined

more transient functional network ‘‘dynamics’’ (i.e., time-varying

changes in functional networks) within a scan, finding little

evidence for time-varying changes in functional networks at

rest, once artifacts and state changes (drowsiness, task) are ac-

counted for (see also Hindriks et al., 2016; Liégeois et al., 2017).

Jointly, our findings indicate that functional brain networks, as

measured with slow fluctuations of the blood-oxygen-level-

dependent (BOLD) signal, are strongly weighted toward stable

information and provide less information about more transient

aspects of neural processing.

It is worth noting that our study does not cover the full state-to-

stable spectrum. Sessions in this study were completed within a



few weeks and do not provide estimates of the stability of func-

tional networks at longer timescales. High stability has been

demonstrated in functional networks over the course of a year

(Poldrack et al., 2015), but networks have also been shown to

vary meaningfully over the lifespan (Chan et al., 2014; Greene

et al., 2014; Satterthwaite et al., 2013a), allowing for the robust

decoding of participant age (Dosenbach et al., 2010; Fair et al.,

2013; Satterthwaite et al., 2013b). We also do not examine

how functional networks change with extended training or

experience. Previous findings (Bassett et al., 2011; Lewis et al.,

2009) suggest training has measurable, but subtle, influences.

Future work will be needed to directly contrast lifespan and

experience-based changes with the effects measured here.

Finally, we note that this manuscript is exclusively focused on

low-frequency functional brain networks, as measured with

time-series correlations of the BOLD signal in fMRI. These find-

ings are highly pertinent to the neuroscientific community, given

the widespread use of fMRI network-based approaches to

address both clinical and psychological questions. However,

signals at higher frequencies (e.g., as might be measured

with electroencephalogram [EEG] or magnetoencephalography

[MEG]) or techniques focused on alternative aspects of BOLD

network interactions (e.g., lag; Mitra and Raichle, 2016) may be

more amenable to tracking state-dependent variability.

Implications for Scientific and Medical Applications of
Functional Networks
The current work has clear implications for both scientific and

medical applications of functional network mapping. Scientifi-

cally, these findings indicate that studies of functional network

differences between populations and task conditions are likely

to be dominated by stable factors with moderate state-based ef-

fects and that care must be taken to isolate the desired compo-

nent. Thus, successful past studies measuring differences in

brain networkswithdisease (seeBaldassarre et al., 2016;Bassett

and Bullmore, 2009; Greene et al., 2016; Menon, 2011; Sheffield

and Barch, 2016; Stam, 2014) aremost likely underpinned by dif-

ferences in a stable network architecture, although comparisons

are best made if studies also avoid contamination from state-

based differences such as might occur with different levels of

sleep between groups (Tagliazucchi and Laufs, 2014) or, in task

or movie paradigms, with differing engagement in the presented

material (Greene et al., 2018). Given the relatively small magni-

tude of most published effects of disease on brain networks,

both sources of variancemaymeaningfully affect interpretations.

Our findings also emphasize the large size of individual-spe-

cific effects. Neglect of individual differences in brain networks

may cause researchers to miss substantial and relevant portions

of variability in the data. Importantly, this conclusion also applies

to studies of how tasks modify brain networks; the bulk of task-

based effects in this study were individually specific, suggesting

that without individual-level analysis, these large effects may be

obscured. However, as previously demonstrated (Gordon et al.,

2017c; Laumann et al., 2015), large quantities of artifact-free

data are needed to accurately measure brain networks in the

face of sampling variability. Jointly, our findings prescribe a

move toward longer and/or multiple resting-state scans per

individual.
Clinically, the highly stable nature of functional networks is

extremely promising for medical applications, suggesting that

they may be good candidates for biomarkers and surgical plan-

ning (Kamran et al., 2014). However, as noted above, these find-

ings indicate that clinical uses of functional networks will bemost

accurate if they are optimized separately for each individual,

consistent with the trend for higher-quality personalized medi-

cine approaches. Furthermore, the moderate size of task-based

effects suggests that measuring brain networks across different

states (e.g., as is done in clinical EEG) may help maximize diag-

nostic value (Finn et al., 2017), especially for certain regions of

the brain, including higher-level control networks. Indeed, one

might imagine that the risks of brain surgery would warrant care-

ful delineation of networks across many different contexts.

Conclusion
Here, we asked to what extent functional brain networks vary

over different timescales. We find that functional brain networks

measured with fMRI are largely stable, dominated by contribu-

tions from common organizational principles and stable individ-

ual features. Functional networks also vary moderately across

task states, largely in an individual-specific manner. With suffi-

cient data, we found that session-dependent variability was

minor. These findings have important implications for functional

network mapping, suggesting that the technique is well suited to

measuring stable individual differences associated with person-

ality traits or disease and may hold promise for identifying bio-

markers. Furthermore, they emphasize the utility of a precision

individual approach in the delineation of functional network

architecture.
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Caterina Gratton

(cgratton@wustl.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The publicly available Midnight Scan Club (MSC) dataset was used for analyses (https://openfmri.org/dataset/ds000224/). The

dataset and processing has been previously described in detail (Gordon et al., 2017c). We provide an overview of relevant aspects

of this dataset and processing below, and then describe specific analyses employed in this manuscript.

Participants and Study Design
The MSC dataset includes structural and functional MRI data as well as behavioral measures from 10 individuals (5 females, ages

24-34), each scanned in 12 separate sessions. Each session occurred on a separate day, beginning at midnight. Daily sessions

were conducted in close succession, with the full set of 12 sessions completed within 7 weeks for all participants. Participant

MSC08 was excluded from this study due to high levels of head motion and self-reported sleep (Gordon et al., 2017c), leaving

nine participants in final analyses. All participants provided written informed consent. Procedures were approved by theWashington

University Institutional Review Board and School of Medicine Human Studies Committee.

The first two sessions were used to acquire structural MRI data from each participant. During each of the subsequent

10 sessions, participants completed a functional MRI resting-state scan followed by fMRI scans in four other task states: a motor

task, a semantic task, a coherence task, and an incidental encoding memory task. MRI acquisition parameters and tasks are

described below.
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METHOD DETAILS

MRI Data Acquisition
MRI data were acquired on a 3T Siemens Trio. Structural MRI data collection included multiple T1, T2, MRA, andMRV scans. For the

purposes of the current study only the T1 and T2weighted scanswere utilized (for alignment; T1 weighted scanswere collected using

a MP-RAGE sequence, with TE = 3.74ms, TR = 2.4 s, TI = 1000ms, flip angle = 8�, voxels = isotropic 0.8 mm3, 224 sagittal slices; T2

weighted scans were collected with TE = 479ms, TR = 3.2 s, voxels = isotropic 0.8 mm3, 224 sagittal slices).

Functional MRI data were collected using a gradient-echo EPI BOLD sequence (TE = 27ms, TR = 2.2 s, flip angle = 90�, voxels =

isotropic 4mm3, 36 axial slices). The same parameters were used to collect a gradient echo field map acquired during each session

for de-warping of the functional data. Participant wakefulness during each scan was monitored with an in scanner eye camera.

Task Designs and Analysis
Functional MRI data were acquired and analyzed for five different conditions, described in detail in Gordon et al. (2017c) and briefly

below. Task activations were modeled with a general linear model (GLM; (Miezin et al., 2000)) using in-house software written in IDL

(Research Systems, Inc.). All GLMs included baseline and trend regressors, in addition to the regressors specified below. For task

functional network analyses, residuals from the GLM analysis were used for time-series correlations, following the ‘‘background

connectivity’’ approach (Al-Aidroos et al., 2012; Fair et al., 2007).

Resting-state

Each session began with a single 30 min. resting-state scan, during which participants were asked to lie still while fixating on a white

cross presented against a black background.

Motor Task

Each session included two runs (7.8 min. total) of a blocked motor task adapted from the Human Connectome Project (Barch et al.,

2013). In each block, participants were cued to move either their left or right hand, left or right foot, or tongue. Each block (15.4 s in

duration) beganwith a 2.2 s. cue, followed by a fixation caret flashing every 1.1 s. to signal amovement. Each run included two blocks

of each type of movement, as well as three fixation blocks (15.4 s).

In the motor GLM, each motor condition (left hand, right hand, left foot, right foot, tongue) was modeled separately with block

regressors convolved with a hemodynamic response function.

Semantic Task

Each session included two runs (14.2 min. total) that each included four blocks, two of the semantic task and two of the coherence

task (see below). Both tasks had a mixed block/event-related design, modeled after the tasks in Dubis et al. (2016). During the

semantic task, a short cue (2.2 s) indicated the start of a block. Subsequently, 30 individual trials were presented, consisting of words

presented for 0.5 s with jittered 1.7-8.3 s intervals. Participants were asked to respond whether the words were nouns or verbs (50%

nouns and 50% verbs were included). A cue at the end of the block (2.2 s) indicated the end of the block. Forty-four second fixation

periods separated blocks.

Coherence Task

The coherence task followed a similar pattern to the semantic task described above, with start and end cues and the same trial timing.

In the coherence task, individual trials consisted of arrays of Glass patterns (Glass, 1969): white dots on a black screen that were

varied in how concentrically they were arranged (50% or 0% coherence to a concentric arrangement, displayed with equal fre-

quency). Participants were asked to respond whether dots were arranged concentrically or randomly.

The sematic and coherence tasks were modeled together in a single GLM, with a separate regressor included for the entire block

for each task type (a ‘‘semantic’’ and ‘‘coherence’’ sustained signal, modeled with a square block regressor) as well as the following

events: start and end cue in each task, noun and verb trials, 50% coherence and 0% coherence trials. Events were modeled with

delta functions for each of 8 separate time-points to model the full time course of responses using an FIR approach (Ollinger

et al., 2001).

Memory Task

Each session included 3 runs of an event-related incidental encoding (‘‘memory’’) task, with a separate run per stimulus type (face,

scenes, and words). Within each run, participants viewed 24 images, repeated 3 times. Individual images were presented for 1.7 s,

with jittered 0.5 – 4.9 s intervals. In the face runs, participants were asked to respond whether each face was male or female. In the

scene run, participants were asked to respond if scenes were indoor or outdoor. In thewords run, participants were asked to respond

if words were concrete or abstract.

In the memory GLM, trials were modeled separately based on both the stimulus type and number of repetitions (i.e., face-first

repeat, face-second repeat, etc.). Each trial was modeled as above, with delta functions across 8 time-points.

QUANTIFICATION AND STATISTICAL ANALYSES

MRI Data Processing and Surface Registration
MRI data were preprocessed and placed on the surface as described in Gordon et al. (2017c) and with shared code available at

https://github.com/MidnightScanClub. The steps are summarized briefly below.
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Structural MRI

The high-resolution T1 images were averaged together and used to generate hand-edited cortical surfaces using Freesurfer (Dale

et al., 1999) and the resulting surfaces were registered into fs_LR_32k surface space as described in Glasser et al., 2013. Separately,

an average native T1-to-Talaraich (Talairach and Tournoux, 1988) volumetric atlas transform was calculated. That transform was

applied to the fs_LR_32k surfaces to put them into Talaraich volumetric space.

Functional MRI Pre-processing

All fMRI data first underwent pre-processing (in the volume) to correct for artifacts and align data, including slice-timing correction,

frame-to-frame alignment to correct formotion, and intensity normalization tomode 1000. Functional data were then registered to the

T2 image, which was registered to the high-resolution T1 anatomical image, which in turn had been previously registered to template

space. Finally, functional data underwent distortion correction (see (Gordon et al., 2017c)). Registration, atlas transformation, resam-

pling to 3 mm. isotropic resolution, and distortion correction were all combined and applied in a single transformation step (Smith

et al., 2004). Subsequent steps were all completed on the atlas transformed and resampled data.

Task fMRI data were processed in the volume using a GLM, with the approach and regressors described above (Task Designs and

Analysis). The residuals from this model were used to compute task functional connectivity, in the ‘‘background connectivity’’

approach (Al-Aidroos et al., 2012; Fair et al., 2007), after undergoing the same Functional Network Processing as the rest data,

described below.

Functional Connectivity Processing

Initial functional connectivity pre-processing steps were taken (in the volume) to reduce the influence of artifacts on functional

network data. These steps are described in detail in Gordon et al., 2017c and Power et al., 2014, and include (1) demeaning and

de-trending of the data, (2) nuisance regression of signals from white matter, cerebrospinal fluid, and the global signal, (3) removal

of high motion frames with framewise displacement (FD) > 0.2mm (see below for additional details) and their interpolation using po-

wer-spectral matched data, and (4) bandpass filtering (0.009 Hz to 0.08 Hz). After pre-processing in the volume, cortical functional

data were registered to the surface (see Structural MRI). Cortical surfaces and volumetric subcortical and cerebellar data were com-

bined into the CIFTI data format from Connectome Workbench (Marcus et al., 2011). Finally, data were smoothed (Gaussian kernel,

sigma = 2.55mm), with 2-D geodesic smoothing on the surface and 3-D Euclidean smoothing for subcortical volumetric data.

Motion Censoring and Data Quantity

As noted above, data from high motion frames (FD > 0.2mm) were censored from analysis. FD in two subjects (MSC03, MSC10)

included correction for high-frequency motion in the AP direction (low-pass filtered at 0.1 Hz; Gordon et al., 2017c). In addition, short

segments of data (< 4 contiguous frames) were removed. Each run was required to have a minimum of 25 good volumes and each

session was required to have a minimum 50 volumes total for each task. Task data were limited to the task periods of each run

(i.e., removing fixation frames).

The following amounts of data were retained for each task across 10 sessions: (1) Rest – mean of 5999/8180 volumes retained per

subject (73%, equivalent to 219 min., with a range of 3429-7667 frames), (2) Motor task – mean of 951/1400 volumes retained per

subject (68%, equivalent to 35 min., with a range of 249-1281 frames), (3) Semantic task – mean of 1121/1349 volumes retained

per subject (83%, equivalent to 41 min., with a range of 874-1336 frames), (4) Coherence task –mean of 1101/1349 volumes retained

per subject (82%, equivalent to 40 min., with a range of 879-1322 frames), and (5) Memory task – mean of 2810/3438 volumes

retained per subject (82%, equivalent to 103 min., with a range of 1723-3325 frames). Supplementary analyses were conducted

onmatched amounts of data from each participant/task/session combination (creating functional network matrices from a restricted

675 frames, or 24.8 min; MSC09 was not included in this analysis due to insufficient data).

Functional Networks
Regions and Systems (Figure 1A)

This study examined functional connectivity among 333 cortical group parcels defined based on boundary-mapping techniques in a

large group of independent subjects (Gordon et al., 2016); group ROIs were selected to allow for comparison across individuals.

These parcels divide into 12 functional systems: somatomotor (SM), somatomotor lateral (SM-lat), visual (Vis), auditory (Aud), cingu-

loopercular (CO), salience (Sal), frontoparietal (FP), dorsal attention (DAN), ventral attention (VAN), default mode (DMN), parietal

memory (PMN), and retrosplenial (RSP)). Low signal regions that grouped poorly into a system were put in an ‘‘unassigned’’ group.

Unassigned regions were excluded from all analyses, with the exception of maps of the distributions of effects across brain regions.

Functional Connectivity (FC)

FC was computed by averaging the BOLD time course within each parcel, after removing censored and interpolated frames, and

computing correlations between the time-series of each pair of parcels. Task data were limited to task periods within each run

(i.e., excluding fixation periods). FC values were Fisher transformed for normality. FC was represented with a parcel x parcel func-

tional network matrix, sorted by system; values along the diagonal blocks represent within-system correlations, and values in the off-

diagonal blocks represent between-system correlations. A separate matrix was created for each individual, task, and two 5 session

groups (5 sessions were grouped to increase the reliability of FC – see (Gordon et al., 2017c); session set A included data from ses-

sions 1-5, session set B included data from sessions 6-10). Additional control analyses were done on networks created frommatched

amounts of data (> 675 volumes, or 24.75 min., evenly sampled from each session) or on 10 separated sessions (see Figure S2).
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Analysis Overview
Data-driven approaches

We used a classical multidimensional scaling (MDS) approach to depict how task, individual, and session variance affected the

similarity among networks in a data driven fashion, and quantified the variance explained with these approaches with principal

component analysis (PCA). MDS places data in multidimensional space based on the similarity (Euclidean distance; correlation-

based distances produce similar results) among data points – where in this case a data point represents the linearized upper triangle

of a given functional network matrix. Each separate matrix (from a given subject, task, and split-half session) was entered into the

classical MDS algorithm (implemented using MATLAB 2012, cmdscale.m). Multiple dimensions of the data were explored. The per-

centage of total variance explained by each dimension was quantified from the eigenvalues (PCA) output from this analysis.

Network similarity

The effects of group, individual, session, and task (as well as their interactions) were directly examined by calculating the similarity

among each original functional network matrix (i.e., correlation among the linearized upper triangles), creating a second-order ‘‘sim-

ilarity’’ matrix. Similarities were Fisher transformed for normality. Subsequently, the average similarity was examined for functional

network matrices that were (1) from different individuals, tasks, and sessions (‘‘group’’), (2) from the same task but different individ-

uals (‘‘task’’), (3) from the same subject but different tasks and sessions (‘‘individual’’), (4) from the same individual and session but

different tasks (‘‘individual & session’’), or (5) from the same individual and task but different sessions (‘‘individual & task’’). These ef-

fects were calculated per subject and effects were compared with one another using paired two-tailed t tests, with p values FDR

corrected for the number of comparisons (10 comparisons across every pairing of the 5 conditions). Additionally, Figures S2A

and S2B plots each effect type separately per subject and per task. A related approach using multivariate distance-based matrix

regression has also recently been proposed for use in comparing functional connectivity of individual vertices (Shehzad et al., 2014).

Normalized Relative Effect Magnitude

The five effect types above were also contrasted by calculating their ‘‘normalized relative effect’’ magnitudes. In this procedure,

we (i) subtracted the baseline from each effect (symbolized by the red lines in Figure 3B). For the group effect there was no baseline.

Task and individual effects were baselined relative to the group to determine how much added similarity these two properties pro-

vided relative to network matrices from different individuals and tasks. Individual and session as well as individual and task effects

were baselined relative to the similarity of networks from the same individual (‘‘individual’’ above). We then (ii) divided each effect by

the sum total similarity across all effects after baselining. The same analyses were also conducted on data where a separate matrix

was computed for each session (Figures S2C–S2E), and from data matched on number of frames (Figure S2B).

System-level effects

To examine the distribution of effects across the brain, we computed the similarity (correlation) of subcomponents of the full func-

tional network, within and among top-down control systems (CO, FP, DAN, VAN, and Salience) or within and among sensorimotor

systems (Visual, SM, SM-lat, Auditory). The same network similarity, average effect, and normalized relative effect magnitude

measures were recalculated. Differences in the similarity of each effect type were calculated using paired two-sample t tests,

FDR corrected for multiple comparisons across effects.

Parcel-level effects

For a more fine-grained analysis of the distributions, similarity was also calculated per parcel, by taking the similarity of that parcel’s

full row (all network relationships) across different individuals, sessions, and tasks. Each of the five effect types and their normalized

relative effect magnitudes were then calculated per parcel, as described above.

Modeling of single network edges

Finally, a formal model was used to examine the influence of each property on single network edges. Using MATLAB’s anovan.m

function, we calculated a mixed-effects ANOVA for each edge that included categorical factors of individual, task, session, and

their interactions to explain variance in the functional correlation of that edge. Individual was modeled as a random effect. We

then examined the variance explained (R2) by the full model, as well as the variance explained from each factor (u2, calculated as

in Cohen, 1973):

u2 =
SSeffect � dfeffect �MSerror

MSerror +SStotal

Results from each edge are represented in functional network matrices, as well as for each parcel (averaged over edges to that

parcel). The F-statistics and FDR-corrected p values for these analyses are also reported in the supplement.

Removal of intrinsic architecture

The influence of intrinsic network architecture on network similarity was examined by subtracting the resting-state matrix from each

task functional networkmatrix (as is done frequently in articles examining task-specific functional connectivity (Betti et al., 2013; Cole

et al., 2014; Gratton et al., 2016)). Subsequent to this subtraction, the similarity and effect magnitude measurements were calculated

as above, along with the system distributions and single edge models. These were contrasted with the network similarity and

modeling values from the original (un-subtracted) functional network matrices from the four tasks (excluding the rest condition to

be analogous to the subtraction data).
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Evoked signal variability

To contrast the variability of brain networks to the variability of evoked signals from tasks, we calculated the similarity among acti-

vation maps from different individuals, tasks, and sessions (computed on the same 5-session groupings, as with FC). Task activa-

tionswere computedwith aGLM, as described in Task Design and Analysis. For the purposes of this analysis, theGLMwas run on the

combined surface-volume CIFTI data, to maximize the precision of activation estimates and best match FC (for previous task

functional connectivity purposes, GLMs were run in the volume and residuals were then preprocessed and moved to the surface

in order to match the workflow of the resting-state data). Task activations represent the percent signal change in each task for all

conditions in that task (against implicit baseline), averaged over vertices within each parcel. The average parcel based task activa-

tions from each individual, task, and session-set were then correlated with one another to create a task activation similarity matrix.

Each effect type and the normalized relative effect magnitudes were then calculated as above. An ANOVA was also used to calculate

the variance explained for the full model and each effect, in this case per parcel. As before, these relative effect sizes were contrasted

with the original functional network matrix similarity, excluding the rest condition to best match the task activation analyses.

DATA AND SOFTWARE AVAILABILITY

Raw and preprocessed data associated with this work are available through the Open fMRI data repository at https://openfmri.org/

dataset/ds000224/, as detailed in Gordon et al., 2017c. Processing code is available at: https://github.com/MidnightScanClub/

MSCcodebase.
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