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Abstract

■ Although it is generally assumed that brain damage pre-
dominantly affects only the function of the damaged region, here
we show that focal damage to critical locations causes disruption
of network organization throughout the brain. Using resting state
fMRI, we assessed whole-brain network structure in patients with
focal brain lesions. Only damage to those brain regions important
for communication between subnetworks (e.g., “connectors”)—
but not to those brain regions important for communication
within sub-networks (e.g., “hubs”)—led to decreases in modular-

ity, a measure of the integrity of network organization. Critically,
this network dysfunction extended into the structurally intact
hemisphere. Thus, focal brain damage can have a widespread,
nonlocal impact on brain network organization when there is
damage to regions important for the communication between
networks. These findings fundamentally revise our understanding
of the remote effects of focal brain damage and may explain
numerous puzzling cases of functional deficits that are observed
following brain injury. ■

INTRODUCTION

The brain can be thought of as a complex network com-
posed of functionally separable sets of regions, referred
to here as subnetworks or modules, which supports both
local processing within and distributed processing across
modules. The study of patients with focal brain lesions
provides a unique approach for understanding this organi-
zation, allowing one to link cognitive functions to specific
brain regions (e.g., the inability to recognize faces after
damage to the fusiform gyrus implicates this area in face
processing). Yet, despite some rough correspondence be-
tween the location of a lesion and the resultant cognitive
deficits, an explanation for why focal lesions can also lead
to nonspecific deficits continues to elude neuroscientists
and clinicians. Localization of function relies on the as-
sumption that undamaged brain regions continue to func-
tion normally, suggesting that deficits are solely attributable
to the damaged tissue (Farah, 1994). Arguments against
this assumption have pointed to (i) specific cognitive
deficits that occur following focal white matter damage
(i.e., disconnection syndromes such as alexia without
agraphia; Geschwind, 1965a, 1965b), (ii) neurophysiologi-
cal changes remote from a lesion (referred to as diaschisis;
Price, Warburton, Moore, Frackowiak, & Friston, 2001;
Feeney & Baron, 1986), and (iii) PDP models of complex
cognitive functions (Farah, 1994). These observations
provide suggestive evidence that cognitive functions are

driven not only by local processing but also by interactions
between a distributed set of brain regions (Mesulam, 1990).

Despite 150 years of neuropsychological evidence for
local and distributed effects of focal brain damage, a mech-
anistic framework to reconcile these observations is lack-
ing. Although recent studies have examined changes in
brain activity distant from the area of damage, these have
been limited to studying changes within specific brain
subsystems (e.g., regions subserving cognitive control
[Nomura et al., 2010], attention [Carter et al., 2010; He
et al., 2007], somatomotor function [Carter et al., 2010;
Mintzopoulos et al., 2009; Sharma, Baron, & Rowe, 2009;
Grefkes et al., 2008; Gerloff et al., 2006], and language
[Warren, Crinion, Lambon Ralph, & Wise, 2009; Price
et al., 2001]), because it has proven difficult to precisely
characterize the global changes in brain organization that
may occur following focal damage. Recently, mathematical
tools based on graph theory have emerged as a method
to quantify large-scale network properties of the brain
(Guye, Bettus, Bartolomei, & Cozzone, 2010; Sporns,
2010b; Bullmore & Sporns, 2009), to parcellate these net-
works into modules, and to identify the roles of individual
brain regions within this structure (Meunier, Lambiotte, &
Bullmore, 2010; He,Wang, et al., 2009; Meunier, Lambiotte,
Fornito, Ersche, & Bullmore, 2009). Initial studies simu-
lating brain damage point to a potential mechanism de-
scribing why only some focal lesions may show robust
long-distance effects (Alstott, Breakspear, Hagmann,
Cammoun, & Sporns, 2009; He, Wang, et al., 2009; Honey
& Sporns, 2008; Sporns, Honey, & Kotter, 2007; Young,
Hilgetag, & Scannell, 2000). In these analyses, simulated
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damage to brain regions that connect different network
modules (connectors) predicted widespread effects on
whole-brain communication, whereas damage to areas that
connect regions within a module (hubs) predicted more
local, nonextensive effects (He, Wang, et al., 2009; Honey
& Sporns, 2008; see Figure 1 for a schematic depiction
of these nodal roles). The extent to which damage af-
fects large-scale brain organization can be measured with
Newmanʼs modularity, Q (Newman & Girvan, 2004), a
comparison between the number of connections within a
module to the number of connections between modules.
Modularity quantifies the ability of the brain to differentiate
into separable subnetworks and is an essential property
found in many complex systems that allows the system to
easily evolve, develop, and engage in flexible, dynamic
behaviors (Meunier et al., 2010).

We empirically tested the hypothesis generated by
studies of simulated lesion data by collecting resting state
fMRI (rs-fMRI) data from 35 patients with focal brain le-
sions and a set of 24 healthy control participants. Studies
of spontaneous coherent fluctuations at rest consistently
identify stable (Shehzad et al., 2009) intrinsic functional
networks that, in a short fMRI recording session, recapitu-
late a number of subnetworks normally engaged by a vari-
ety of different tasks (Smith et al., 2009). Here, we sought
to investigate the differential vulnerability of brain regions
with a range of nodal properties within these subnetworks
by studying patients with focal damage to a variety of areas
distributed throughout the brain (Figure 2). This enabled
us to test how damage to regions with different nodal
properties (e.g., hubness or connectorness) influenced
large-scale network structure, without regard for potential

differences in the specific anatomical site of damage and
neuropsychological characteristics of each patient.

METHODS

Participants

Thirty-five patients (age range = 17–84 years, mean age =
60 years) with focal lesions because of stroke (n = 25),
traumatic brain injury (n = 6), and tumors (n = 4) and
24 healthy participants (age range = 18-37 years, mean
age= 24 years) were studied. Four of the 35 lesion patients
had bilateral lesions and were excluded from the single
hemisphere analyses, leaving 31 unilateral patients (21 left
and 10 right). All healthy participants were prescreened to
exclude individuals with a history of neurologic or psychi-
atric conditions. Informed consent was obtained from par-
ticipants in accordance with procedures approved by the
Committees for Protection of Human Subjects at the Uni-
versity of California, Berkeley.

MRI Acquisition Procedure

T2*-weighted EPIs were collected on a whole-body 3-T
Siemens MAGNETOM Trio MRI scanner using a 12-channel
head coil. Structural images were acquired using an axial
magnetization prepared rapid gradient echo 3-D T1-
weighted sequence (repetition time [TR] = 2,300 msec,
echo time [TE] = 2.98 msec, flip angle = 9°, 1 × 1 ×
1 mm voxels) for patients and controls. An additional
FLAIR image was collected for each patient to better lo-
calize the lesion. For patients, 10 min of EPI data were
analyzed (300 time points, TR = 2000 msec, TE = 30 msec,
twenty-eight 3.30-mm-thick axial slices). For controls,
10 blocks of 4 min and 20 sec of EPI data were analyzed
(217 time points, TR = 1370 msec, TE = 50 msec,
twenty-four 3.85-mm-thick axial slices). All participants
were instructed to stay awake with their eyes open. No
other task instruction was provided.

Figure 1. Schematic of nodal roles. Schematic illustrating the role
of connectors (black circles) and hubs (white squares) in modular
organization. Hubs have many within-module connections, and
connectors have many between-module connections. Note that any
brain region may have both connector- and hub-like properties and can
have continuous values for hubness and connectorness (see Figure 5).

Figure 2. Overlap of individual patient lesions. An overlap plot of
the location of brain damage in 35 patients with focal lesions. The
color designates the number of patients with damage to a particular
brain region. On this and subsequent figures: R = right hemisphere;
L = left hemisphere.
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MRI Preprocessing

Image preprocessing was carried out in AFNI (Cox, 1996).
The following prestatistics processing was applied: removal
of nonbrain structures from the EPI volumes and spatial
smoothing using a 5-mm Gaussian kernel. Following Fox
et al. (2005), signal frommovement, white matter, and ven-
tricles was regressed out. The high-resolution T1-weighted
image was coregistered to the mean functional data and
then segmented using SPM5 (Friston, Ashburner, Kiebel,
Nichols, & Penny, 2007). The template used for segmenta-
tion was derived from 152 normal participants (MNI152;
Montreal Neurological Institute, Montreal, QC, Canada)
and relied upon probabilistic tissue maps. Spatial transfor-
mation parameters to translate between native and stan-
dard space were obtained from the brain segmentation
and used to normalize each individualʼs T1-weighted brain.
This extra segmentation step was necessary for accurate
registration, which is often confounded by structural brain
damage.

Lesion Mapping

Lesion masks were manually traced by authors E.N. and
C.G. in native patient space according to visible damage on
a T1-weighted anatomical scan and guided by damage and
hyperintensities on a T2-weighted FLAIR image. All lesion
masks were examined by M.D. for anatomical specificity.

Regions of Interest

Ninety cortical and subcortical regions from the Automated
Anatomical Labeling (AAL) Atlas (Tzourio-Mazoyer et al.,
2002) were reverse normalized into individual participant
space to create subject-specific ROIs. ROIs in which EPIs
covered less than 25% of voxels within an ROI in any partici-
pant within a group were excluded from further analysis,
resulting in 90 regions in control participants and 88 regions
in patients.
For single-hemisphere analyses, the standard 90 AAL

atlas ROIs were divided into two equally sized halves
(superior and inferior) to ensure that a sufficient number
of ROIs would be present within each hemisphere for
graph theory analyses. Although ROI size was not matched
between whole brain and single hemisphere analyses,
results were only compared between each single hemi-
sphere or between whole-brain graphs, not across these
two classes. As described above, regions with less than
25% EPI coverage within an ROI in either hemisphere in
any single participant in a group were excluded, resulting
in 87 regions in controls and 86 regions in lesion patients in
each hemisphere.

Functional Connectivity

Voxel time series were averaged within each ROI. These
averages were bandpass filtered (0.009–0.08 Hz) to remove

physiological noise such as cardiac and respiratory artifacts
(Fox et al., 2005). Functional connectivity was assessed in
each participant by computing time series correlations
between average time series across all pairs of ROIs, result-
ing in a correlation matrix for each control participant and
lesion patient. Similarly, for single-hemisphere analyses,
all of the pairs of averaged time series from ROIs within
that hemisphere were used to construct a correlation
matrix. Separate correlation matrices were constructed for
each hemisphere in each participant.

It should be noted that pairwise correlation values
derived from this type of analysis will only reflect the syn-
chronized or alternate activations and deactivations in dif-
ferent regions and will not detect similar time courses that
are phase-shifted (i.e., these will show up as low correla-
tions). Because of the low frequency of the filtered signal
and the nature of the resting state activity, we assumed that
such phase-shifted patterns would not signal the presence
of healthy interactions.

Graph Theory, Simulated Annealing,
and Modularity

ROI-by-ROI correlation matrices were derived for each
participant as described above and Fisher-transformed to
produce normally distributed values. We thresholded each
correlation matrix to create an adjacency matrix (a matrix
of 1s and 0s reflecting above-threshold correlations and
below-threshold correlations respectively), which then
served as the basis for defining an unweighted, undirected
graph. Graphs are defined as a set of nodes (ROIs from
the correlation matrix) connected by a number of edges
(correlation values above a threshold). Graphs were cre-
ated and analyzed using the NetworkX Python package
(Hagberg, Schult, & Swart, 2008).

The number of edges was equated between individual
participant graphs by thresholding at a set cost, rather
than correlation, value. A cost value represents the frac-
tion of total possible edges that is present in the graph.
By thresholding in this manner, we are able to directly
compare the pattern of connections that exists across dif-
ferent graphs, removing differences in the graph structure
that would only result from differences in correlation
magnitudes across individuals (Achard & Bullmore, 2007;
Bartolomei et al., 2006). All analyses were done over a
range of possible cost values (0.05–0.25) to determine
the stability of the results. These values are within the ideal
cost range (approximately 0.01–0.30) where the sparsity of
the graph is considered optimal, because within this range
many graph theory metrics, including small worldness, are
maximal (Bullmore & Bassett, 2011; Bassett et al., 2008;
Achard & Bullmore, 2007). The main results in the manu-
script are presented at a cost of 0.15 or 0.20, that is, points
in the center of the ideal cost range (although results were
largely consistent across costs).

This procedure of creating graphs from correlation
matrices was done for each lesion and control participant
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separately, by using their individual correlation matrices
(control participant blocks were averaged to create a sin-
gle matrix), and for the control participants as a group, by
averaging the Fisher-transformed correlation matrices
across all control participants to create a control tem-
plate. At the end of this step, we produced a separate
graph for each lesion patient, control participant, and
the control template at each cost value for the whole
brain and for each individual hemisphere.

Each graph created above was partitioned into separate
subnetworks or modules derived by optimizing Newmanʼs
modularity (Newman & Girvan, 2004) using simulated
annealing (Guimera & Nunes Amaral, 2005). Simulated
annealing is a data-driven method that makes no as-
sumptions about the number of modules to be found in
a graph. This method is computationally slow but very
robust at finding the optimal modularity structure (Danon,
Díaz-Guilera, Duch, & Arenas, 2005; Guimera & Nunes
Amaral, 2005); for this size of graphs, the computational
cost was not a limiting factor. Modularity is a measure that
compares the number of within-module with between-
module connections and reflects the strength of a graphʼs
modular organization. Modularity, or Q, is defined as:

Q ¼
Xm
i¼1

eii − a2
i

� �

where eii is the fraction of edges that connect two nodes
within a module, i; ai is the fraction of edges connecting
a node in module i to any other node; and m is the total
number of modules. Modularity will be 1 if all edges fall
within a module, and it will be 0 if there are no more
connections within a module than would be expected
by chance (Newman & Girvan, 2004).

At each cost, three modularity-optimized partitions were
derived for each patient, for each control subject, and for
the control template (the whole-brain network and each
hemisphere network independently). These optimized
partitions were then evaluated using modularity and com-
pared with one another using a normalized mutual infor-
mation (MI) measure (Danon et al., 2005). MI quantifies
the similarity of two partitions and is defined as

MIðA;BÞ ¼
−2

PmA

i¼1

PmB

j¼1
Nij log

NijN
Ni:N: j

� �

PmA

i¼1
Ni log Ni:

N

� �þPmB

j¼1
N: j log

N: j

N

� �

where mA is the number of communities in one parti-
tion, A, and mB is the number of communities in a sec-
ond partition, B. This measure is based on defining a
confusion mA × mB matrix, N, with rows corresponding
to modules in partition A and columns corresponding
to modules in partition B. The elements of N, Nij, then
quantify the number of nodes that were in module i of par-
tition A and module j of partition B. MI will be 1 if the two

partitions are identical; low values can result either from
modules containing different nodes or the presence of
different numbers of modules (Danon et al., 2005).
We compared modularity and MI values between con-

trol participants and lesion patients in the whole brain
using a two-tailed two-sample t test and between the two
hemispheres in each participant group using a paired-
sample t test. Because of the a priori hypothesis that
lesioned hemispheres should have more disruption than
nonlesioned hemispheres, these tests were conducted
with a one-tailed test.
Hemisphere effects between patient and control groups

were tested with a two-sample t test after matching the
groups for the hemispheres tested (i.e., the same number
of left and right hemispheres went into the patient and
control participant analyses).

Nodal Roles, Damage Scores, and Correlations
with Modularity

From the control template partition, we calculated metrics
reflecting the roles of each node. The participation co-
efficient (PC) is a measure of the number of intermodule
connections for each node normalized by their expected
value. The PC value for each node i, PCi, is defined as

PCi ¼ 1−
XNM

s¼1

kis
ki

� �2

where ki is the total number of connections to node i and
kis is the number of connections between node i and nodes
in module s. If a node has connections uniformly distrib-
uted to all modules, then its PC value will be 1; on the other
hand, if its links are concentrated within its own module,
its PC value will be 0 (Guimera & Nunes Amaral, 2005).
The within-module degree (WD) is a z-scored measure

of the number of intramodule connections to each node.
The WD value for each node i, WDi, is defined as

WDi ¼ ki− �ksi
σksi

where ki is the number of connections between node i and
other nodes in its module si, �ksi is the average degree of all
nodes in si, and σksi is the standard deviation of the degree
of all nodes in si. This gives a relative (z-scored) measure of
how well connected any node is to other nodes within its
own module (Guimera & Nunes Amaral, 2005).
Nodes with higher PC values are considered connec-

tors and nodes with higher WD values are considered
modular hubs (sometimes called “provincial” or “connec-
tor” hubs depending on their corresponding PC value;
Guimera & Nunes Amaral, 2005). It should be noted,
however, that the term “hubs” in the literature has also
been applied to nodes scoring high on a variety of dif-
ferent properties (e.g., high on a variety of measures of
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degree or centrality; see, e.g., Sporns, 2010a; Buckner
et al., 2009; Bassett et al., 2008).
In each patient, we used the control template nodal

roles to calculate separate PC and WD damage scores. PC
damage scores were calculated by averaging the PC nodal
values from the control template for each AAL ROI that was
lesioned in that patient and then multiplying that value by
the percent damage sustained by the node. Similarly, WD
damage scores were the average of the WD nodal values
from the control template for each AAL ROI that was le-
sioned in that patient, weighted by the amount of damage
to each node.
To study the relationship between the healthy role of

nodes that are damaged and the resultant modular
strength in patients we examined the linear relationship
between damage scores and modularity using a Pearsonʼs
correlation. The significance of correlations at each thresh-
old was tested with a nonparametric permutation test
(two-tailed). The significance of the differences between
WD and PC correlations was tested using the z statistic
described by Steiger (1980) to compare dependent cor-
relations (two-tailed test).
For individual hemisphere analyses, the mean and stan-

dard deviation of individual control participants was used
to normalize themodularity values from each patient based
on the hemisphere damaged. Hemispheric values of mod-
ularity (m) were normalized in patients to account for
potential hemispheric differences using the formula:

mz ¼ m− �mcontrols

σcontrols

Here m is the original patient modularity, �mcontrols is the
average modularity of control participants in the hemi-
sphere under examination, σcontrols is the standard deviation

in modularity of control participants in the hemisphere, and
mz is the resultant normalized modularity score. These
values were then correlated with the PC and WD damage
scores as described previously.

RESULTS

We estimated functional connectivity in rs-fMRI using time
series correlations (Fox et al., 2005) between different
brain regions defined from the AAL digital brain atlas in
both patients with focal lesions and healthy controls. Func-
tional connectivity graphs are defined as a set of nodes
(regions within the AAL atlas) connected by edges (pairs
of nodes for which connectivity values passed a threshold;
see Methods). Graphs from individual patients were com-
pared with a control template graph formed from the aver-
aged functional connectivity data of healthy controls.

We found four modules in the healthy control network:
a fronto-parietal, centro-temporal, occipital-parietal, and
medial-temporal module (Figure 3). This modular organiza-
tion, which is similar to that observed in other rs-fMRI stud-
ies in healthy individuals (He, Wang, et al., 2009; Meunier
et al., 2009), was consistent across individual participants.
The MI (a measure of the similarity between two graph par-
titions that ranges from 0 for unrelated partitions to 1 for
the same partition) was 0.59 on average between the
control template graph and the individual healthy partici-
pant graphs and was stronger in the right hemisphere
than the left [t(23) = −2.15, p = .04]. Across patients,
damage was distributed across all modules, and many pa-
tients had damage to more than one module (Figure 4).
No clear relationship between modularity and the pat-
tern of damage to different modules was observed. On
average, patients had lowermodularity values than controls

Figure 3. Modular organization of the healthy control template. Top (left) and lateral (right) views of the control template graph created from
averaged rs-fMRI data from 24 healthy participants. Brain regions (nodes) are represented by squares (hubs, WD > 1) or circles (nonhubs, WD ≤ 1),
and node size represents connectorness (PC). The modularity-optimized partition of the graph resulted in four modules: fronto-parietal (FP),
centro-temporal (C), medial-temporal (MT), and occipito-parietal (OP). Within-module edges match module color and between-module edges
are black. This partitioning scheme was consistent across thresholds and present in both hemispheres when analyzed separately (see Figure 8).
R = right hemisphere; L = left hemisphere.
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[t(57) = 4.14, p = 10−4]. As expected, the lesioned hemi-
sphere was significantly less modular [t(30) = 1.93, p =
.03] and less similar to the control template [t(30) =
2.48, p= .01] than the nonlesioned hemisphere. However,
the nonlesioned hemisphere was also significantly less
modular than the corresponding hemisphere in controls
[t(53) = 3.75, p = 10−4], suggesting that dysfunction
extended into the intact hemisphere in patients.

For the set of damaged nodes in each patient, we
assessed the normal role of those nodes within a healthy
brain (defined by the control template) based on two
characteristics: WD and PC (Figure 5). WD is a measure
of the number of intramodule connections of a node, and
PC is a measure of the number of intermodule connec-
tions of a node (Guimera & Nunes Amaral, 2005). Nodes
with high PC values are connectors, and nodes with high

WD values are hubs (see Figure 1 for illustration). We
created a PC and WD damage score by averaging these
healthy PC or WD values from the control template for
all nodes that were damaged in each patient, weighted
by the amount of damage to each node. We then exam-
ined the relationship between patientsʼ weighted damage
scores and modularity after damage. Patientsʼ PC damage
score correlated negatively with modularity (Figure 6),
suggesting that modular organization decreased with in-
creasing amounts of damage to connectors (r = −.41,
p = .02, cost = 0.15). No such relationship, however,
was seen between WD damage scores and modularity
(r = .14). Thus, increasing damage to connectors pre-
dicted decreases in modularity significantly more than
damage to hubs (z = 2.37, p = .02).
Mathematically, modularity is inversely proportional

to the number of connections between modules (see
Methods), suggesting that having fewer nodes with high
PC values should lead to increased modularity. We ob-
served this inverse relationship in healthy control partici-
pants, where those participants who had fewer connector
nodes had higher modularity values (r = .49, p < .01,
cost = 0.15). However, in patients with focal lesions, we
observed that a loss of connectors was related to de-
creases, rather than increases, in modularity. This indicates
that in patients the loss of connectors does not simply
cause the loss of a select number of edges, but rather
leads to a reorganization of the graph that is detrimental
to its modular structure.
To determine whether this network reorganization

extended to regions remote from the lesion, we exam-
ined the relationship between damage and modularity in
graphs constructed independently for the lesioned and
nonlesioned hemisphere. Given the potential hemispheric
differences in modularity in control participants, we first
normalized the patientsʼ modularity values according to
the side on which the lesion occurred to correct for hemi-
spheric asymmetries (see Methods). Similar to the whole-
brain results, we observed a negative relationship between PC
damage score and normalized modularity in the lesioned
hemisphere (r=−.41, p= .02). Critically, this relationship
was also present in the nonlesioned hemisphere (r =
−.44, p = .01), demonstrating that damage to connectors
disrupts network structure even in the intact hemisphere.
In both hemispheres, the PC damage score was more neg-
atively correlated with modularity than the WD damage
score (Figure 7; lesioned: z = 2.16, p = .03; nonlesioned:
z = 1.95, p = .05) demonstrating a specific relationship
between connector damage and modular organization. Ex-
amples of individual patients with low and high connector
damage are shown in Figure 8, clearly emphasizing the

Figure 4. Damage to each module. Patients had focal brain damage
to a heterogeneous set of cortical regions that overlapped with multiple
modules. Color indicates percentage of damage to the module, and
patients are sorted based on their modularity scores, ranging from
low (top) to high (bottom) levels of modularity. FP = fronto-parietal;
C = centro-temporal; MT = medial-temporal; OP = occipito-parietal.

Figure 5. Nodal roles. Nodes in the control template were characterized based on their PC (left), a measure of the number of intermodule
connections, and WD (right), a measure of the number of intramodule connections. Individual nodes from different modules had a wide range
of values, providing a continuum over which patient damage could be assessed. In the figure, AAL region names correspond to abbreviations
reported in the AAL atlas (Tzourio-Mazoyer et al., 2002); R = right hemisphere; L = left hemisphere.
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global and hemispheric disruptions that result from
damage to connectors.

To ensure that the relationship between brain damage
and modularity was specific to the nodal role of the dam-
aged region and the network structure of the lesioned
brain, we performed several additional analyses to rule
out alternate explanations. First, we determined that the
correlations between damage scores and modularity were
consistent across graph thresholds (costs), demonstrating
that the results were not an artifact of the particular thresh-
old applied for analyses The correlation between modular-
ity and PC damage score for whole-brain analyses was
r = −.36, −.28, −.41, −.36, −.30, respectively, for costs =
0.05, 0.10, 0.15, 0.20, 0.25 (for the lesioned hemisphere,
r=−.14,−.20,−.41,−.36,−.27, and for the nonlesioned
hemisphere, r=−.09,−.24,−.33,−.44,−.38). Second, it
is possible that changes in modularity are related to the
extent of tissue damage, rather than the nodal role of the
damaged region. However, we found that correlations
between modularity and lesion size were nonsignificant
(r = −.095, p = .58 at cost = 0.15; not significant at any
threshold), suggesting that nodal role determines network
disruption. Third, lesions to connectors may simply de-
crease the average magnitude of connectivity of the brain,
rather than modifying the modular structure of those con-
nections. However, the correlation between PC damage
score and the average functional connectivity magnitude in
each graph was not significant (r = .091, p = .59 at cost =
0.15, not significant at any threshold), suggesting that it
was the pattern of connections across the brain, rather than
their overall strength, that was modified. Finally, we tested
whether the individual thresholds applied to achieve the
same edge density across patients (see Methods) could
explain the relationship with connector damage. Again,
these correlations were not significant across any cost (r =
.071, p= .68 at cost = 0.15). Taken together, these analyses
strengthen our finding that damage to critical sites repre-

sented by connectors results in a disruption in modular
organization of the brain.

DISCUSSION

Here, we analyzed rs-fMRI data from a population of pa-
tients with focal brain damage to examine the effects of
lesions on the structure of large-scale functional brain
networks. This study provides direct evidence that global
changes in brain organization occur specifically after focal
damage to brain regions that are normally necessary for
communication between subnetworks. Importantly, this
disruption in hemispheric network organization extends
to an intact hemisphere without any structural damage.
This demonstrates that connectors (e.g., brain regions
that connect different modules), but not hubs (e.g., brain
regions that connect regions within a module), are crucial
for the maintenance of large-scale modular structure.
Our findings confirm predictions derived from studies

simulating the effects of local damage on brain networks
(He, Wang, et al., 2009; Honey & Sporns, 2008) that speci-
fically implicated connector damage with disruption in
measures of network organization. Furthermore, these re-
sults provide the first empirical quantification of the large-
scale, long-distance, functional effects that can be caused
by focal lesions to critical network locations. Although pre-
vious studies of patient populations (Carter et al., 2010;

Figure 6. PC and WD damage score correlations with modularity
across the whole brain. (Left) PC damage score was negatively
correlated with the modularity of individual participants, across
the whole brain (cost = 0.15, r = −.41, p = .02). (Right) WD
damage score was not related to modularity, and the correlation
between PC and modularity was more negative than the correlation
between WD and modularity. These relationships were consistent
across a range of cost thresholds.

Figure 7. PC and WD damage score correlations with modularity for
each hemisphere. (Left) PC damage score was negatively correlated
with the modularity of individual participants in the (top) lesioned
(cost = 0.15, r=−.41, p= .02) and (bottom) nonlesioned hemisphere
(cost = 0.20, r = −.44, p = .01). (Right) WD damage score was not
related to modularity in either hemisphere. The correlation between
PC and modularity was more negative than the correlation between
WD and modularity in both hemispheres and these relationships
were consistent across a range of cost thresholds.

1282 Journal of Cognitive Neuroscience Volume 24, Number 6



Nomura et al., 2010; Sharma et al., 2009; Grefkes et al.,
2008; He et al., 2007; Gerloff et al., 2006; Price et al.,
2001) have suggested that focal lesions may impact regions
remote from the site of structural damage, the focus in
these studies was on changes in connectivity magnitude
among a small number of brain regions. Studies examining
changes inwhole-brain functional connectivity networks that
occur following traumatic brain injury (Cao & Slobounov,
2010; Castellanos et al., 2010; Nakamura, Hillary, & Biswal,
2009) and tumors (Bosma et al., 2009; Guggisberg et al.,
2008; Bartolomei et al., 2006) have shown evidence for dis-
ruption in these functional networks. In addition, a recent
study (Crofts et al., 2011) using diffusion MRI tractography
after focal lesions to the BG and internal capsule found
widespread changes in the organization of white matter
connections extending into the intact hemisphere, sug-
gesting that structural changes may, in part, underlie the
reorganization of large-scale functional networks observed
in our study. We were able to expand on this finding both
by quantifying the effects of lesions on network structure
across the whole brain and by linking the extent of these
remote effects to the network role of the damaged region.
A variety of studies have attempted to link diseases with

changes in the nodal roles in specific regions (see reviews
by Pievani, de Haan, Wu, Seeley, & Frisoni, 2011; Guye

et al., 2010; Sporns, 2010b). For example, global changes
in network structure are accompanied by local changes
in nodal roles of specific regions in multiple sclerosis
(where regional efficiency and correlation strengths of sev-
eral regions including the insula were correlated with white
matter deposition; He, Dagher, et al., 2009), in traumatic
brain injury (where the degree of nodes was decreased
in frontal and increased in parietal and occipital regions;
Cao & Slobounov, 2010), in schizophrenia (where hubs
defined by a variety of properties shifted away from fron-
tal and cingulate regions; Bassett et al., 2008), and in
Alzheimerʼs disease (where decreases in clustering of the
hippocampuswas seen in patients; Supekar,Menon, Rubin,
Musen, & Greicius, 2008).

In a similar approach to ours, studies investigating
network structure in healthy controls and those with
Alzheimerʼs disease have found that global changes in
the large-scale network structure of the brain (measured
by clustering, path length, and phase-lag index) were pre-
dicted by the selective damage to nodes with many con-
nections (high degree nodes) in healthy controls on the
basis of modeling results (Stam et al., 2009). In confir-
mation of the modeling results, another study found that
high-degree regions in control participants correspond to
the locations of amyloid plaque deposition (Buckner et al.,

Figure 8. Examples of individual patients with low and high PC damage scores. (A) Control template graphs from the average of the healthy
control participants across (top) the whole brain and (bottom) each hemisphere separately. (B) Patients with low connector damage tended to
have preserved modular structure across the whole brain (top; Q = 0.48) and both hemispheres (bottom; lesioned: Q = 0.36, nonlesioned:
Q = 0.41). (C) Patients with high connector damage, however, had highly disrupted modular organization across the whole brain (top; Q = 0.21)
and both hemispheres (bottom; lesioned: Q = 0.20; nonlesioned Q = 0.19). Plotting conventions follow Figure 3. Module colors are assigned
to match control template modules with the highest number of overlapping nodes. Yellow stars represent lesioned nodes, with size of the
star proportional to the percent damage to that node (these two patients were approximately matched for the sizes of their lesions).
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2009). Thus, although there has been quite a bit of vari-
ability in the specific nodal roles and network metrics ex-
amined, studies of the network structure in disease have
suggested that changes in the properties of specific nodes
are linked to widespread network disruption. Our study
builds upon these findings by linking structural damage
to specific node types with the magnitude of widespread
network disruption.

More broadly, this study adds to a growing literature
proposing that function, or dysfunction, of individual brain
regions cannot be considered in isolation but rather must
be placed within the context of the brainʼs large-scale
network organization (Sporns, 2010b; McIntosh, 2000;
Mesulam, 1990). Here we provide evidence for a general
principle of brain function where it is the network role,
rather than the anatomical location, of a region that de-
termines its importance for organizingmodular brain struc-
ture and, consequently, the impact that damage to the
region will have.

In addition, our findings offer a reinterpretation of per-
plexing neuropsychological observations present through-
out the literature, which show that focal lesions can often
be accompanied by unexpected or widespread functional
deficits that are not predicted from the local functional
properties of the area (Devinsky & DʼEsposito, 2001).
Furthermore, our findings suggest that an understanding
of the network role of the damaged region could be critical
for determining a patientʼs prognosis after brain injury. We
predict that damage to hub regions that are central to
subnetworks subserving specific cognitive functions will
produce specific cognitive deficits, whereas a wider range
of functional deficits will result from damage to connector
regions that are central to the coordination between multi-
ple subnetworks. Future work will need to examine the
extent to which recovery processes reshape the brainʼs
functional networks, potentially through a reassignment
of nodal roles to compensate for damage.
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