
Article
Evidence for Two Indepen
dent Factors that Modify
Brain Networks to Meet Task Goals
Graphical Abstract
Highlights
d Human brain networks differ between rest and task at

activated and hub regions

d Regions stratified by activation and hub-status show distinct

FC-related attributes

d Activated hubs exhibit FC attributes consistent with enacting

task control

d Findings suggest dissociable factors for linking brain regions

in complex tasks
Gratton et al., 2016, Cell Reports 17, 1276–1288
October 25, 2016 ª 2016 The Author(s).
http://dx.doi.org/10.1016/j.celrep.2016.10.002
Authors

Caterina Gratton, Timothy O. Laumann,

Evan M. Gordon, Babatunde Adeyemo,

Steven E. Petersen

Correspondence
cgratton@wustl.edu

In Brief

Gratton et al. show that, during tasks,

human brain networks are subtly

modified both at task-activated regions

and at topologically important hubs.

Classes of regions with these two

properties show distinct patterns of

network changes, suggesting they index

dissociable factors for modifying brain

networks in a task.

mailto:cgratton@wustl.edu
http://dx.doi.org/10.1016/j.celrep.2016.10.002
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.celrep.2016.10.002&domain=pdf


Cell Reports

Article
Evidence for Two Independent Factors
that Modify Brain Networks to Meet Task Goals
Caterina Gratton,1,9,* Timothy O. Laumann,1 Evan M. Gordon,7,8 Babatunde Adeyemo,1 and Steven E. Petersen1,2,3,4,5,6
1Department of Neurology
2Department of Radiology
3Department of Anatomy and Neurobiology
4Department of Biomedical Engineering
5Department of Psychology
6Department of Neurological Surgery

Washington University in St. Louis, St. Louis, MO 63110, USA
7VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA
8Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA
9Lead Contact

*Correspondence: cgratton@wustl.edu

http://dx.doi.org/10.1016/j.celrep.2016.10.002
SUMMARY

Humans easily and flexibly complete awide variety of
tasks. To accomplish this feat, the brain appears to
subtly adjust stable brain networks. Here, we investi-
gate what regional factors underlie these modifica-
tions, asking whether networks are either altered
at (1) regions activated by a given task or (2) hubs
that interconnect different networks. We used fMRI
‘‘functional connectivity’’ (FC) to compare networks
during rest and three distinct tasks requiring seman-
tic judgments, mental rotation, and visual coherence.
We found that network modifications during these
tasks were independently associated with both
regional activation and network hubs. Furthermore,
active and hub regions were associated with distinct
patterns of network modification (differing in their
localization, topography of FC changes, and vari-
ability across tasks), with activated hubs exhibiting
patterns consistent with task control. These find-
ings indicate that task goals modify brain networks
through two separate processes linked to local brain
function and network hubs.

INTRODUCTION

Humans can easily and flexibly complete many different tasks

depending on their goals. This ability depends on both special-

ized processing occurring in individual brain regions and coordi-

nated interactions across distributed regions organized into

large-scale networks (also called brain systems). A fundamental

question of cognitive neuroscience is how specialized brain re-

gions are able to flexibly link together to perform different tasks.

Using fMRI, functional networks can be identified even when

individuals lie quietly without any explicit task in a ‘‘resting state,’’

based on patterns of correlated fMRI signal between brain
1276 Cell Reports 17, 1276–1288, October 25, 2016 ª 2016 The Auth
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regions (i.e., functional connectivity [FC]) (Biswal et al., 1995; Po-

wer et al., 2011; Yeo et al., 2011). Recent studies have high-

lighted the consistent organization of functional networks at

rest and during varied tasks (Betti et al., 2013; Cole et al.,

2014; Krienen et al., 2014), suggesting that the brain’s large-

scale networks are dominated by a fundamentally stable intrinsic

backbone (Cole et al., 2014).

However, diverse behavioral states appear to be supported by

smaller-scale changes that subtly modify brain networks (Cole

et al., 2014; Krienen et al., 2014). Although the magnitude of

these changes is small, it is possible to accurately decode the

task state of a participant simply from their FC in a task (Alnæs

et al., 2015; Gonzalez-Castillo et al., 2015; Shirer et al., 2012).

In addition, task performance is related to these modifications

of FC (Dwyer et al., 2014; Gonzalez-Castillo et al., 2015; Gordon

et al., 2014; Hampson et al., 2010; Kelly et al., 2008), suggesting

that the alterations are relevant to behavior.

Despite this evidence, previous studies have failed to provide

an explanation for where and why network interactions vary dur-

ing the engagement of a task. Here, we examine two hypotheses

inspired by largely distinct literatures on localized and distributed

processing (Figure 1): do networks change (1) because regions

are activated in a task or, (2) because of inherent properties of

the network’s organization?

The first possibility has motivated a host of studies examining

functional connectivity changes among small sets of functionally

‘‘relevant’’ (or task-activated) regions. The logic is that regions

specialized for individual cognitive operations are both simulta-

neously activated and need to interact to complete a complex

task. For example, in visual attention tasks, changes in FC have

been recorded between activated visual regions and activated

attentional-control regions (Gazzaley et al., 2007; Spadone et al.,

2015), presumably reflecting the need for control regions to

communicatewith visual regions. This viewproposes that interac-

tions among brain regions are altered in different contexts primar-

ily due to the specialized functions of the individual brain regions.

An alternative view proposes that network interactions are

guided by the topological structure of brain networks (Sporns,
or(s).
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Proposed Factors Contributing to Task FC

Intrinsic network interactions (right) may be modified to accomplish task goals

by changing connectivity between regions activated by a task (Hypothesis 1;

activated regions shown with red outlines) or by changing connectivity pat-

terns of specialized hub regions (Hypothesis 2; squares) that help connect

networks to each other. Regions and connections without changes are faded

in the right panel to emphasize differences.
2011). In this complex systems perspective, brain network prop-

erties are determined from the pattern of edges (here, FC) among

nodes (brain regions), modeled as a graph, rather than by study-

ing local processing characteristics of brain regions. In the brain

graph, specialized connector hub locations are defined by hav-

ing connections distributed across multiple different networks

(Guimera and Amaral, 2005). These regions are seen as critical

for coordinating interactions, and thereby information process-

ing, across brain networks (Power et al., 2013). Therefore, strong

changes in network interactions are predicted to occur at

connector hubs. This view is supported by evidence that (1) brain

lesions to connector hubs cause widespread disruptions in

network organization (Gratton et al., 2012) and behavior (Warren

et al., 2014), and (2) connector hubs in the frontoparietal network

show malleable connectivity across tasks (Cole et al., 2013).

These findings suggest a central role for connector hubs in

network interactions but leave unclear how hubs relate to

regional specializations in task control and processing.

We directly contrast these two hypotheses by using fMRI to

measure functional brain networks in healthy participants at

rest and engaged in three varied tasks. We examined activated

and connector hub regions to determine which property most

strongly associated with task-related FC alterations.

RESULTS

To examine how brain networks are altered during task and rest

states, we analyzed fMRI data from 28 participants while they

rested quietly or completed three tasks: a semantic task
requiring a noun/verb judgment on a presented word, a mental

rotation task requiring a same/mirror image judgment on two

objects, and a coherence task requiring a judgment of whether

dots were arranged concentrically. These tasks are especially

well-suited to our question, as they included varied stimuli

(including verbal and non-verbal stimuli) and they call upon

widely varying cognitive processes (e.g., language, mental

manipulation, and perceptual grouping), with differing demands

on task control and perceptual resources (Dubis et al., 2016)

(e.g., varying in behavioral performance and activation of control

systems). We measured functional brain networks in each state

by computing correlations across 264 regions arranged into 13

systems (Figure 2A).

Network Organization Is Largely Similar during Task and
Rest
To evaluate the overall effect of task state on FC network organi-

zation, we computed the similarity between task and rest by

measuring the correlation between the connectivity matrices in

each condition. On average, large-scale networks were very

similar between task and rest (Figures 2B and 2C; ‘‘task’’ data is

concatenated across all tasks). The correlation between task

and rest group average FCmatrices was r = 0.95 (Mantel’s statis-

tic: p < 0.001; single subject matrices: r = 0.73, SD = 0.04). High

correlationswerealsoseenbetween rest andsingle tasks (seman-

tic versus rest: r = 0.94;mental rotationversus rest: r = 0.92, coher-

ence versus rest: r = 0.94, all p < 0.001; Figure S1A).

Furthermore, network topology was very similar during rest

and task states. Data-driven assignment of regions to network

communities was substantially unchanged by task engagement

and was similar to previously published findings (Power et al.,

2011) (quantified with normalized mutual information [NMI]:

rest versus task NMI = 0.80; rest versus Power-2011 networks

NMI = 0.73; task versus Power-2011 NMI = 0.73). In addition,

we measured the similarity of connector hub locations across

states, by calculating the participation coefficient (PC) metric

(Guimera and Amaral, 2005) for each node. Thismetricmeasures

the distribution of a region’s connections across different sys-

tems; regions with high PC are connector hubs. As with network

organization, PC values during rest in our subjects were very

similar to published findings from a large cohort (Power et al.,

2013) (r = 0.88) and to PC during task (r = 0.90) suggesting that

connector hub locations did not shift substantially during the

performance of tasks. These findings indicate that the core

intrinsic network organization is largely unchanged between

rest and task states.

Subtle Systematic FC Differences Exist between Task
and Rest
Despite the overall similarity in large-scale network structure,

smaller-magnitude differences were present between task and

rest. We measured differences by directly contrasting task and

rest FC in a difference matrix (Figure 3A). Differences between

the states were reliable: (1) p value distributions showed a signif-

icant enrichment of edges p < 0.05 compared with a permuted

null distribution (p < 0.001), and (2) many individual connections

remained significant after false discovery rate (FDR) correction

(Figure S2).
Cell Reports 17, 1276–1288, October 25, 2016 1277
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Figure 2. A Common FC Organization Is Present during Task and Rest States

(A) FC was calculated via time-series correlations among 264 cortical and subcortical regions of interest (spheres), distributed across 13 networks (Power et al.,

2011) (sphere colors; surface colors represent networks used for voxelwise analyses).

(B and C) FC during rest (B) and task (C) is very similar, dominated by a strong network structure with high correlations within each system (diagonal) compared to

between systems (off-diagonals; similar results were seen for individual tasks, see Figure S1A).
FC differences were observed both within and between net-

works. During tasks, within-network FC decreased within the

visual system and, to a lesser extent, in other sensory systems

(somatomotor [SM], lateral somatomotor [lat-SM], and auditory)

as well as the subcortex. Increases in within-network FC during

tasks were seen in the default mode (DMN) (Figure 3B, left). By

contrast, between-network FC decreased in the DMN and

increased for the visual system, as well as subsets of control

systems (Figure 3B, right). These gross characteristics were

consistent for single tasks (Figure S1B), despite their variable

cognitive demands.

ActivatedRegionsAlter FC, Primarily betweenNetworks
Given the reliable changes in FC across participants and

tasks, we asked whether changes were systematically related

to the properties of individual regions. We examined two

potential hypotheses (Figure 1): (1) FC is altered primarily for

regions activated by a task, or (2) FC is altered primarily for

connector hub regions that mediate interactions across

different systems (see Figure S3 for activated and connector

hub nodes).
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To test the first hypothesis, we examined if FC was altered

more in activated regions—that is, those exhibiting large abso-

lute percent signal changes during the task—than non-acti-

vated regions. Note that FC was calculated after removing

evoked activations from the task time series via regression to

reduce spurious inflations of correlation measurements from

co-activation as in Al-Aidroos et al. (2012) (see Figure S4 for

activation results without task regression; as expected, these

statistics were inflated compared with those reported below).

We conducted a quartile analysis comparing the absolute

changes in FC of regions, grouped based on their activation

magnitude (top versus bottom 25%). We found that FC

changed significantly more for activated than non-activated re-

gions (compared with permutation testing here and in following

tests: p < 0.001; individual tasks: all p[FDR] < 0.01 corrected

across tasks, Figure S5A), providing evidence that the func-

tional specialization of regions relates to their network modula-

tions during tasks.

Next, we asked how activation-related changes in FC were

distributed across within- or between-network connections.

Compared with non-activated nodes, activated regions showed
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Figure 3. Subtle but Reliable FC Differences

Were Present during Task and Rest States

Subtle but reliable differences were seen in the

direct contrast of task and rest correlation matrices

for 264 regions of interest (A) and on average for

each voxel to other voxels within its own network

(B, left) or voxels in other networks (B, right). FC

changed within-system (along the diagonal, e.g.,

increases within the DMN, decreases within the

visual and other sensory/motor systems; red and

blue arrows in B) and between-systems (off-diago-

nal, e.g., increases between visual and subsets of

control systems [e.g., CO, FP, DAN]; pink and purple

arrows in B). These effects were consistent for

individual tasks (Figure S1B).
a greater absolute magnitude of between-network FC changes

(Figure 4, left, p < 0.001; individual tasks: all p[FDR] < 0.01, Fig-

ure S5C), but only a numerical trend to change within their own

network (p = not significant [n.s.]).

Moreover, these findings were robust to variations in our

analysis, as follows. We also found a significant linear relation-

ship between activation and FC change if we treated the two

measures as continuous variables rather than breaking them

into quartile bins (Figure S6, all FC: Spearman’s rho = 0.37,

p < 0.001; between FC: rho = 0.36, p < 0.001, see also Table

S1), or if we used other binning thresholds (Table S2). Adopting

the Gordon et al. (2016) parcellation or examining activation of

the highest and lowest FC-change regions produced analogous

results (all FC and between FC, p < 0.001). These findings

support our first hypothesis: FC of activated regions changes

during a task. They also suggest that this effect primarily occurs

for between-network connections.

Hubs Show Complex FC Network Modulations
Our second hypothesis (Figure 1) proposes that task-related

changes in FC will be seen at connector hubs. We found

that the FC of connector hubs (top 25% of PC values) did not
Cell Rep
change significantly more than non-con-

nectors (bottom 25% of PC values) on

average across the brain (permutation

p = n.s.). Interestingly, however, signifi-

cant differences were observed if be-

tween- and within-network FC changes

were considered separately. Compared

to non-connectors, connector hubs

showed significantly increased modula-

tion of between-network FC (p < 0.001),

but significantly reduced modulation of

within-network FC (p < 0.001; Figure 4,

right). Individual tasks showed similar

effects, with connector hubs exhibiting

significantly higher between-system mod-

ulations in two of three tasks (p[FDR] <

0.01 for mental rotation and semantic

tasks) and lower within-system FC in all

three tasks (all p[FDR] < 0.05; Figures

S5B and S5C). Thus, connector hubs ex-
hibited complex modulation upon entering task states, with a

relative suppression of FC changes within a network, but

enhanced changes in between network FC.

Again, results were robust to variations in analysis. We found

similar relationships if the measures were treated as continuous

variables: PC showed a positive correlation with between-

network FC change (Figure S6, rho = 0.25, p < 0.001) and a nega-

tive correlation with within-network FC changes (rho = �0.34,

p < 0.001, see also Table S1). Other binning thresholds produced

similar results (Table S2). Adopting the Gordon et al. (2016)

parcellation, using PC values computed from this dataset, or

examining the PC of highest and lowest FC-change regions pro-

duced analogous results (all within- and between-network com-

parisons, p < 0.01). These findings support our second hypothe-

sis, that FC changes during a task are related to connector hubs,

but suggest that hubs differentially modulate different types of

connections, showing relatively invariant connectivity within a

system, while modulating connections between systems.

Activation and PC Are Separately Related to FC
A linear regression analysis was used to assess the separable in-

fluences of activation and connector-hub status on task-state
orts 17, 1276–1288, October 25, 2016 1279



Figure 4. FC Modulations in Activated Re-

gions and Connector Hubs

Active (left) and connector hub nodes (right) show

significantly enhanced modulations in between-

network FC, but not within network FC—instead,

connector hubs show lower changes in within-

system FC than non-connectors nodes. Similar

effects were seen for individual tasks (Figure S5).

***p < 0.001, **p < 0.01, error bars represent SE

across ROIs.
changes in FC, with terms for activation, participation coeffi-

cient, and the interaction of both properties (Table S3; activation

and PC were not themselves correlated, Spearman’s rho = 0.08,

p = 0.23, Figure S3C). As before, activation had a significant pos-

itive relationship with task-based changes in FC across the brain

(p < 0.001), in this case both within (p < 0.01) and between net-

works (p < 0.001). PC had a significant negative relationship with

within-network FC changes (p < 0.001) and a positive relation-

ship with between-network FC changes (p < 0.001). However,

no significant interactions were seen (all p = n.s.). These findings

indicate that PC and activation provide separable, additive, con-

tributions to modulations of FC during tasks.

Node Classes Show Distinct FC Attributes
In order to characterize how activation and PC relate to task-

control and processing, we identified four classes of nodes

from the extremes of each distribution: (1) silent simple nodes

(in the bottom 25% of both activation and PC), (2) activated

connector nodes (top 25% of activation and PC), (3) activated

simple nodes (top 25% activation and bottom 25% PC), and

(4) silent connector nodes (top 25% PC and bottom 25% activa-

tion). Notably, activation and PC were continuously distributed,

but the distributions had heavy tails, suggesting that extreme

PC and activation valuesmay exhibit specialized characteristics.

The four classes were found in distinct locations (Figure 5).

Activated connectors (N = 20) were primarily in top-down control

systems, including the frontoparietal (FP), dorsal attention (DAN),

cinguloopercular (CO), and salience systems. Silent connectors

(N = 9) were also found in control systems (CO, salience, FP, as

well as auditory regions abutting the CO network), but in second-

ary locations, e.g., posterior insula portions of the CO network

and rostral portions of the FP. The activated simple class

(N = 16) was associated with processing systems (visual, SM,

DMN) that were relevant for the present tasks. Finally, the silent

simple class (N = 14) was also associated with processing

systems (SM, lat-SM, and the DMN). The association of the

four classes with different networks suggests that theymay carry

out different roles in task control and processing.

Furthermore, we examined how classes varied across attri-

butes—the FC change magnitude, topography, and variability

across tasks—that would be expected to differ between regions

involved in task control and processing. Specifically, regions that
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enact task control are predicted to show

high between-system FC, especially with

processing systems relevant for a given

task and flexibility in their patterns across
tasks with different goals. Regions involved in basic task pro-

cessing, instead, are predicted to show high FC-modulations

with both control regions and regions within their own system.

Additionally, they should show stereotyped FC patterns regard-

less of task context. We find that each class was associated with

distinct FC-attributes, arguing that classes relate to distinct pro-

cesses for modifying brain networks (summary in Figure 6D).

Magnitudes of FC Modulations

The four classesdiffered in the absolutemagnitude of FCchanges

within (F(3,55) = 9.67, p < 0.001) and between (F(3,55) = 10.55,

p < 0.001) each network (Figure 6A; tested with a between-group

ANOVAof theeffectof classonFCchangemagnitude).Compared

with the silent simple class, activated simple nodes had enhanced

within- and between-network FC during tasks. Activated connec-

tors, instead, had relatively smaller changes in within-network FC,

but the highest levels of between-network FC changes. Finally,

silent connector showed the most stable within-network FC and

only modest changes in between-network FC.

Topography of FC Modulations

The four classes differed in the topography of their FC changes

(measured as the average FC between regions in each class

and target systems after removing values <20 mm from a

seed; Figure 6C). During the task, the activated connector class

had greater FC with control systems and processing regions

relevant to the task (i.e., visual and SM regions used for stimulus

input and motor output in the tasks), but decreased FC with the

DMN. By contrast, the activated simple class exhibited two

major patterns: visual regions had decreased task FC with other

visual regions and increased FC with control systems, while the

DMN regions exhibited increased FC within their own network,

but decreased connectivity with control regions. Silent connec-

tors, on average, were not modulated across the major groups

of networks (see Figure 7 for details on a subset). Finally, the

silent simple class had decreased FC with processing regions

but few increases (see Figure S7 for maps and quantification of

the dominant patterns exhibited by regions within each class).

Flexibility of FC Modulations

Finally, we asked if classes were equally ‘‘flexible’’ in adjusting

their pattern of connections across task states, as would be pre-

dicted for regions that modify distributed brain processing to

achieve different goals. ‘‘Flexibility’’ was quantified by computing

the correlation of whole-brain FC differences (task-rest) between



Figure 5. Regions Stratified into Classes

by Activated and Connector Hub Character-

istics

Regions were stratified into four classes: silent

simple (bottom 25% of both activation and PC),

activated simple (top 25% activation, bottom 25%

PC), silent connector (bottom 25% activation, top

25% PC), and activated connector (top 25% acti-

vation and PC) nodes. Node locations are shown

as white spheres overlaid on their systems (colors).

Classes were associated with distinct systems.
the three tasks; lower correlations should indicate relatively more

flexibility in FC modulation across tasks. Classes differed signifi-

cantly in their flexibility (between-group ANOVA: F(3,55) = 9.35,

p < 0.001). The activated simple class had relatively low flexibility

in the pattern of changes across tasks, similar to that seen with

silent simple nodes. By contrast, activated and silent connectors

both showed relatively high flexibility across tasks (Figure 6B;

all two-sample t tests between simple and connector classes,

p[FDR] < 0.01, corrected for six comparisons between classes).

Comparing across Classes within a Single Network
Many of the divergent patterns of FC modulation were associ-

ated with nodes from distinct networks. However, we observed

that, in some cases, regions from the same network, but different

classes, also showed systematically different FC changes. For

example, we compared activated (N = 7) and silent (N = 4)

connector nodes in the CO network (Figure 7A; this comparison

yielded the highest N in two separate classes). The two classes

differed in their pattern of network modulations, clustering sepa-

rately (Figure 7B). Moreover, direct comparison showed that

activated connectors had relatively higher FC with control sys-

tems (FP, DAN) and the visual processing system, but relatively

lower FC with the DMN (two-sample t test; Figure 7C). This pro-

vides evidence that node class, determined by activation and

connector-hub status, relates to differences in task-FC even in

cases where nodes are from the same network.

DISCUSSION

Despite a largely preserved network organization, we found reli-

able small-scale differences between task and rest FC. Critically,
Cell Repo
we tested whether network changes were

related to (1) the activation of a region, or

(2) a region’s topological hub properties.

We found evidence that both properties

provide separate, additive contributions

to changes in FC in tasks varying from

semantic judgments and mental rotation

to visual coherence assessments. Acti-

vated regions showed higher connectivity

than non-activated regions, especially

between networks. Connector-hubs also

had large modulations of between-

network FC, but relatively invariant

within-network FC. Regions stratified
into different classes based on their activation and connector-

hub status were localized to distinct networks and showed

significantly different patterns of FC changes, suggesting that

they are associated with distinct processes for modulating FC

during tasks.

An IntrinsicNetwork StructureDominatesRest andTask
States, but Individual Connections Show Reliable
Differences
FC networks and network properties were very similar between

task and rest states, consistent with past reports (Betti et al.,

2013; Cole et al., 2014; Krienen et al., 2014). These findings

indicate that functional networks are dominated by stable,

intrinsic correlation patterns that do not substantially change

under different states of consciousness (Greicius et al., 2008;

Larson-Prior et al., 2009) or task engagement (Cole et al.,

2014). This stable backbone may be driven by anatomical con-

nectivity between regions as well as the statistical history of co-

activations that regions exhibit across the lifespan (Dosenbach

et al., 2007).

However, although quite similar, subtle but systematic differ-

ences were present between rest and task networks, as sug-

gested by previous examinations of an expanse of tasks (Betti

et al., 2013; Cole et al., 2014), including internally motivated

tasks that share many similarities with rest (Krienen et al.,

2014; Shirer et al., 2012). We found FC differences both within

and between systems, including in processing (e.g., visual), con-

trol (e.g., subsets of frontoparietal and cinguloopercular), and

default mode systems.

Our tasks differed in detailed aspects of their FC, but promi-

nent changes were consistent across all three tasks. These FC
rts 17, 1276–1288, October 25, 2016 1281
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Figure 6. Classes Differ in the Magnitude, Topography, and Flexibility of Their FC Patterns

Node classes had different FC-related attributes.

(A) Classes differed in the absolute magnitude of within and between network FC changes (measured via one-way ANOVA, ***p < 0.001).

(B) Classes differed in the flexibility of their topography across tasks, measured as the average correlation among FC difference maps for each class.

(C) Classes differed in the topography of FC differences across networks, quantified via the FC task-rest difference for a class of regions (source) to each brain

network (target; *p[FDR] <0.05; control, CO, salience, FP, DAN, VAN; relevant processing, visual, SM; processing, lat-SM, auditory).

(D) These attributes, and the figures associated with each, are summarized in (D); absolute magnitudes of FC changes are shown with increasing ± signs relative

to silent simple nodes to denote increasingly large differences). Error bars represent SE across ROIs.
changes were associated with different classes of nodes,

defined by nodes’ activation and connector-hub properties,

and are discussed in more detail below. Although our tasks var-

ied substantially in their nature (including verbal and non-verbal

stimuli, varying levels of perceptual demands, varying levels of

difficulty, and varying involvement of control systems) (Dubis

et al., 2016), they did not fully sample the space of tasks that
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humans can complete. All of the tasks had visual inputs, hadmo-

tor responses, and used a mixed-block/event-related design.

Future tests will be needed to establish whether any elements

of these findings are dependent on the commonalities present

across these tasks and, additionally, what properties may drive

network differences between tasks (Cole et al., 2014; Krienen

et al., 2014).
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Figure 7. Nodes within the CO Network Show Distinct FC Patterns Based on Their Class

(A) Regions associated with different classes showed distinct patterns of FC modulations, even when they were part of the same network. For example, we

contrast the pattern of FC modulations (task-rest) exhibited by activated connectors (N = 7, orange) and silent connectors (N = 4, green) that are part of the CO

network (purple; A).

(B) Classes clustered separately from one another based on their FC difference maps.

(C) Activated connector CO regions showed increased couplingwith FP, DAN, and visual regions relative to silent connector CO regions (quantified in left panel for

different types of networks; *p[FDR] < 0.05; see Figure 6 for network groupings). Error bars represent SE across ROIs.
Modulations of Brain Networks Are Related to Both the
Functional and Topological Properties of Each Region
Having found reliable connectivity changes between task and

rest, we investigated whether altered FC is more associated

with the functional (activation) characteristics of regions (Hy-

pothesis 1) or the topological properties (connector-hub status)

of regions within large-scale networks (Hypothesis 2). We found

evidence that both the activation of a region and the region’s pu-

tative hub role was related to changes in FC during a task.

Activation

Intuitively, one might assume that changes in FC will perfectly

reflect activation during a task. Indeed, many past studies

have focused on studying FC among small sets of activated (or

de-activated) areas. For example, in visual attention tasks, inter-

actions are altered among visual association regions and fronto-
parietal cortex (Gazzaley et al., 2007), the default mode (Chadick

and Gazzaley, 2011), and other visual areas (Al-Aidroos et al.,

2012), that all show either enhanced or suppressed activity dur-

ing the task. Analogously, other studies have examined FC

among regions activated in long-term memory (King et al.,

2015), executive function (Elton and Gao, 2014), and working

memory tasks (Cohen et al., 2014; Fransson, 2006; Hampson

et al., 2006; Newton et al., 2011).

We examined the assumption adopted in these studies,

that task-active regions will show significant changes in FC,

by systematically measuring the relationship between activa-

tion in these three tasks and FC throughout the brain. Activated

regions had greater changes in FC during tasks than non-

activated regions, especially between networks. This effect

was consistent across our tasks, various analysis approaches,
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and parcellation schemes, extending the generalizability of our

results beyond previous findings limited to a small number of

connections in a single task context (i.e., tasks spanning se-

mantic judgments, mental rotations, and visual coherence).

These findings indicate that system-level network changes

accompany, and may facilitate, local processing during tasks

(see also Bassett et al., 2012; Siebenh€uhner et al., 2013; Zale-

sky et al., 2012).

In general, it is notable that activation and FC were not

perfectly correlated with one another. This finding emphasizes

that while activation and correlation measures may be related,

they appear to index separable aspects of brain function—one

encapsulating first order statistics of local neural responses

and the other capturing second order statistics reflecting how

variations in neural activity may be related across distributed

regions.

Finally, it remains unclear whether the task-based alterations

seen in this manuscript reflect sustained state-based changes

in network correlations or trial-to-trial variability of evoked

responses that is correlated across regions (Rissman et al.,

2004) or, indeed, if these two hypotheses are dissociable, as

fluctuations in activity between intrinsically correlated regions

help explain trial-to-trial evoked response variability (Fox et al.,

2007). Future research will be needed to differentiate between

these two possibilities and their implications for functional

networks.

Connector Hubs

In addition to activation, we demonstrate that the hubs are

also central to understanding network modulations in tasks.

Connector hubs are defined by having strong connections to

multiple brain systems; here we show they also have strong

changes in between-system FC during tasks. This ability to

modify interactions between distributed systems may be central

to completing complex tasks such as the ones examined here

(Mesulam, 1990). Our findings link to prior evidence that has

also suggested that connector hubs are important for cognition.

Brain lesions to connector hubs lead to pervasive behavioral def-

icits (Warren et al., 2014) and connector hubs show a diverse

activation profile across different cognitive processes (Bertolero

et al., 2015). Further, Cole et al. (2013) found that the FP

network, characterized as having many connector-hubs,

showed variable between-system FC across tasks. We demon-

strate that connector hubs throughout the brain, in many control

systems, show high FC modulation across these three tasks.

Moreover, these hub effects are separate from the effects of

task activation and exhibit distinct FC-related attributes, sug-

gesting that hub status and task activation index separate fac-

tors for modifying brain networks.

Perhaps surprisingly, connector hubs had significantly less

absolute change in their within-network FC. While robust, this

result is less clearly predicted from previous literature. Perhaps

high within-network invariance allows connector hubs to main-

tain a more veridical tie to the functional processing of their

own network, while mediating malleable interactions with other

networks. Regardless of their cause, these findings indicate

that connector hubs are able to more finely tune their FC,

compared with activated regions, as some connections are

selectively modified while others are kept constant.
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Dissociable Factors for Task-Based Network
Modulation
Activation and PC provided separable, additive contributions to

network changes during the three tasks examined here, sug-

gesting they relate to dissociable factors for networkmodulation.

To characterize these complementary processes, we examined

classes of regions, stratified based on their activation and

connector hub status. The classes exhibited a number of distinct

attributes, including in their locations, the topography of their

network changes, and the flexibility of this topography across

task contexts. Although we cannot identify the specific neural

processes employed based on these data, the distinct charac-

teristics exhibited by activated and connector hub nodes argue

for the presence of at least two dissociable mechanisms for link-

ing brain regions together during complex tasks such as these.

We propose that the classes are differentially linked to enacting

task control and to conducting task processing.

Activated Connectors

Activated connectors, regions that were both activated and

connector hubs, exhibited characteristics consistent with a

role in enacting control. During tasks, these regions had the

largest absolute magnitude of network changes between sys-

tems and the smallest changes within a system, suggesting a

substantial but finely tuned manipulation of network connectiv-

ity. Activated connectors were found primarily in ‘‘control’’ sys-

tems, which have been implicated in a variety of attention- or

top-down-related functions, including goal-directed attention

(DAN) (Corbetta and Shulman, 2002), detection of salient events

(salience) (Seeley et al., 2007), and task control at multiple time-

scales (CO, FP) (Dosenbach et al., 2007, 2008).

Activated connectors had pronounced increases in FC with

processing regions that were relevant for our tasks (visual, SM

systems), a topography consistent with ‘‘control’’ systems that

exert top-down signaling adjustments on relevant processing

systems in the service of task goals (Petersen and Posner,

2012). A separate literature has also found lower FC between

control systems (especially the DAN) and the DMN during tasks,

as we found here (Bluhm et al., 2011; Kelly et al., 2008; Newton

et al., 2011;Wang et al., 2012). Fewer studies have examined the

interactions across different control systems during tasks (but

see Cohen et al., 2014)—we show that subsets of these systems

become more integrated, despite their independent pattern at

rest (Dosenbach et al., 2007; Nomura et al., 2010).

Finally, activated connectors had variable patterns of FC

changes across tasks, consistent with the expectation that

control regions should show flexibility in network modulations

in different task contexts, given differences in their control and

processing demands (see Dubis et al., 2016 on these tasks).

The attributes of activated connectors were distinct from

those of other classes, underscoring the importance of both acti-

vation and connector-hub properties for understanding how

brain regions interact during tasks.

Activated Simple Class

This class contained regions in processing systems, including

the visual system and a hand-SM region. Unlike activated con-

nectors, this class showed high levels of both within- and be-

tween-system modifications and their pattern of FC changes

had low flexibility across tasks. These attributes are consistent



with basic task-processing regions that alter interactions both

with control regions in other networks and processing regions

in their own network, but in a stereotyped way regardless of

the specific task context.

In this class, the topography of network changes varied sub-

stantially by system. Visual regions had decreased visual corre-

lations, but increased correlations to other (especially control)

systems, as in previous reports (Betti et al., 2013; Spadone

et al., 2015). DMN regions, instead, had decreased correlations

with other, especially control, systems (Bluhm et al., 2011; Kelly

et al., 2008; Newton et al., 2011; Wang et al., 2012) and

increased within system correlations during tasks. The literature

is mixed on how tasks affect FC within the DMN (Betti et al.,

2013; Fransson, 2006; Hampson et al., 2006; Newton et al.,

2011), perhaps due to differences in task design or the portions

of the DMN examined. We speculate that both the visual and

DMN effects reflect a relatively more isolated, modular, state

for the system—coherence within the system core and segrega-

tion from other systems—when not called upon (i.e., during the

task for DMN, during rest for the visual system). Indeed, the

placement of DMN regions in the activated simple class and their

shared characteristics with visual regions suggests that they are

closely related to processing, rather than control, systems.

Silent Connectors

Silent connectors shared some attributes with activated connec-

tors (invariant within-network FC, high flexibility in FC patterns

across tasks, and localization to control systems). However,

relative to activated connectors, silent connectors had weaker

magnitudes of between-network FC and a distinct FC topog-

raphy (e.g., a lack of FC to visual systems and, in CO silent con-

nectors, decreased FC with control systems) (Figure 7). More-

over, silent connectors were found in less well-studied regions

of control systems (i.e., the mid-cingulate and posterior insula

portions of the CO, rostral frontal portions of the FP). These re-

gions may be associated with control of different types of tasks

than we and others have examined; alternatively they may have

a distinct role in task processing than the well-studied ‘‘core’’

sections (Dosenbach et al., 2006) associated with activated

connectors.

Silent Simple Class

Silent simple regions were neither task-activated nor connector

hubs; therefore, neither hypothesis would expect strong

changes in these regions—indeed, we found weak changes in

these regions, primarily associated with decreased FC in pro-

cessing systems.

Conclusions
Although dominated by a stable intrinsic backbone, large-scale

networks differ systematically between three distinct tasks and

rest. We tested two hypotheses for which locations would

show large changes in functional connectivity: regions activated

in a task or regions that serve as connector hubs for transferring

information across systems. We found evidence that the

properties provide separate contributions to network changes.

Furthermore, classes of regions defined by their activation and

connector-hub status were located in different networks and

exhibited different magnitudes, topography, and variability of

FCmodulations. In particular, ‘‘activated connector’’ regions ex-
hibited attributes consistent with a role in enacting task control.

These findings argue for the presence of at least two dissociable

factors related to functional specialization and network hubs that

contribute to changes in coordination among distributed brain

regions during different task contexts.

EXPERIMENTAL PROCEDURES

Participants

Task and resting-state data were collected from 29 healthy young participants

(15 female, average age 25 years, range 21–30 years). Task data was previ-

ously published (Dubis et al., 2016), and a subset of the resting-state data

was included in a larger cohort reported in Power et al. (2011). After censoring

high-motion time points (Power et al., 2014), one participant was dropped for

the task (concatenated data from all task conditions) versus rest comparisons,

and four participants were dropped from examinations of single task data

due to insufficient remaining time points (<120). Written informed consent

was obtained from all participants, whowere compensatedmonetarily for their

participation. Procedures were approved by the Institutional Review Board at

Washington University in St. Louis.

Tasks

Participants completed three tasks in a mixed block/event-related design: a

semantic task (noun/verb judgment on a word), a mental rotation task

(same/mirror image judgment on two 3-D objects), and a coherence judgment

task (judgment of whether a set of dots arranged were concentrically). The

tasks differed substantially from one another, including either verbal or non-

verbal stimuli or required different perceptual and control demands (Dubis

et al., 2016). Furthermore, a substantial amount of data was present for

each task (�23 min per task, >1 hr total), providing reliable measures of

whole-brain task FC (Laumann et al., 2015). See the Supplemental Experi-

mental Procedures for details on behavioral paradigms and stimuli.

Resting State

During resting-state scans, participants lay quietly in the scanner while

passively viewing a fixation cross. Between 10 and 140 min (average =

50 min) of total resting state data were collected from each participant,

10–20 min of which were from the same session as the task data. When avail-

able (N = 23/29 participants), resting state data was supplemented from

other experimental sessions.

Image Acquisition Parameters

Data was acquired on a Siemens 3T Trio at Washington University in St. Louis,

using a 12-channel head coil. A high-resolution structural image was acquired

from each participant using a sagittal magnetization-prepared rapid gradient

echo (MP-RAGE) sequence (slice time echo = 3.08 ms, TR = 2.4 s, inversion

time = 1 s, flip angle = 8�, 176 slices, 13 13 1mm voxels). Functional images

were acquired using an asymmetric spin-echo echo-planar pulse sequence

(TR = 2.5 s, TE = 27 ms, flip angle = 90�, 43 4 mm in-plane resolution). Whole

brain coverage was achieved using 32 contiguous interleaved 4-mm slices

aligned parallel to the anterior-posterior commissure. These parameters

were identical for all task and rest sessions.

Data was initially processed using standard techniques to reduce artifacts

(Miezin et al., 2000) (including slice-time correction, alignment, intensity

normalization, and transformation to atlas space; see the Supplemental

Experimental Procedures for details).

FC Processing

Both resting and task data were analyzed using a FC approach. First, task-

evoked activity was removed from task time series by applying the GLMmodel

described below and extracting the residuals from the model. Importantly, this

approach reduces spurious correlations induced by task activations and high-

lights underlying changes in connectivity that are present throughout a period

of task performance (i.e., ‘‘background’’ connectivity) (Al-Aidroos et al., 2012).

Note that the overall pattern of FC changes were quite similar whether task

FC was calculated based on residuals or raw data (Figure S4A), although as
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expected, estimates of their relationship to activation were inflated (Fig-

ure S4B). Tasks were analyzed both individually and as a unit (concatenated

across tasks).

FC processing was applied to both task and resting-state time series. Pro-

cessing followed Power et al. (2014), including regression of nuisance signals

from white matter, cerebral spinal fluid, global signal, and motion parameters,

spatial and temporal filtering, and censoring of high motion frames (>0.2 mm;

the Supplemental Experimental Procedures). Following this, Pearson correla-

tions were calculated between average time series from regions of interest. In

task FC analyses, only frames from relevant task periods were included in the

correlations. Notably, functional connectivity measures are related to anatom-

ical connectivity (Honey et al., 2009), but do not necessarily reflect direct

anatomical connections between brain regions.

Regions and Networks

FC analyses were computed among 264 regions of interest (10-mm diameter

spheres) across the brain spanning cortical and subcortical locations (Power

et al., 2011) (Figure 2A). These regions are associated with 13 networks based

on previous work (Power et al., 2011): somatomotor (SM), lateral somatomotor

(lat-SM), cinguloopercular (CO), auditory, default mode (DMN), memory, vi-

sual, frontoparietal (FP), salience, sub-cortex, ventral attention (VAN), dorsal

attention (DAN), and cerebellum, as well as a group of undefined regions. In

this and previous work (Power et al., 2011), regions were sorted into networks

using the Infomap random walk clustering algorithm (Rosvall and Bergstrom,

2008) based on weighted correlation matrices across a range of sparsity

thresholds (2%–10% for 264 regions of interest [ROIs], 0.5%–5% for voxel-

wise networks). To algorithmically define consensus networks from this data-

set for comparison to Power et al. (2013), we placed regions in networks using

data from the lowest threshold, but excluding small networks (<4 nodes or 400

voxels). Higher thresholds were examined in turn to assign networks to voxels

that remained unaffiliated.

Analyses were additionally completed on 333 parcels produced through

novel surface-based FC boundary mapping methods (Gordon et al., 2016)

and onmodified voxelwise graphs (Power et al., 2011) to show consistency be-

tween approaches. All ROI and voxelwise analyses were conducted on vol-

ume-space data but are projected onto the surface for visualization purposes.

General Linear Model of Task Activation

We modeled task activations using a general linear model (GLM) approach to

determine how task-FC was altered in activated regions. Modeling was con-

ducted on individual voxels using in-house imaging software. The GLMmodel

included linear and constant terms for each run to remove baseline and drift

effects. In addition, the following task events were modeled: start cues, end

cues, trials coded by accuracy and type (i.e., noun and verb for the semantic

task, three different orientation bins for the mental rotation task, and four

different coherence conditions for the coherence task), and sustained task re-

sponses. Sustained responses were modeled as a block effect. For cue and

trial conditions, ten individual time points (25-s) were modeled with delta func-

tions to describe the full temporal extent of the hemodynamic response. This

approach makes no assumptions about the shape of the hemodynamic

response (Ollinger et al., 2001), allowing us to fully model (and subsequently

remove) evoked activations even when response shapes may differ. Activa-

tions from modeling were expressed as a percent signal change, dividing

the magnitude of activation by the baseline term for each run. Average activa-

tions for each region were computed as a weighted average of all correct task

conditions (cue, trial, and sustained; all conditions were included as FC was

examined over the entire task).

Comparing Correlation Matrices

Correlation values were Fisher z transformed. Similarity between FC matrices

was evaluated by correlating FC values and by computing Mantel’s statistic.

Differences between FC matrices were quantified using two approaches

that provided a mixture of generalized and edge-specific measurements.

First, a paired two-sided t test was conducted for each unique entry in

the FC matrix. The distribution of t test p values was compared to a null-

distribution determined by permuting task and rest states. Second, individual

t tests were subjected to false discovery rate (FDR) correction for
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multiple comparisons to identify connections that significantly differed be-

tween conditions.

FC Change per Region

The average absolute change in FC for a given region was computed by taking

the mean of the absolute correlation differences between task and rest for that

region to every other region. We also examined within- and between-network

changes in FC separately by computing themean of a region’s absolute FC dif-

ference to other regions within its own network (within-network) or to regions in

other networks (between network). The majority of analyses were computed

using the 264 ROIs and networks introduced above. We also made similar

computations for voxelwise graphs, where group-average connectivity differ-

ences were computed for each voxel to every other voxel (all connections),

all other voxels assigned to the same network (within-network), or voxels

assigned to other networks (between-network). Voxelwise summaries were

used for qualitative representation of the anatomical locations of effects, not

quantification.

Relationship between FC and Activation/PC

We used a quartile analysis to compare activated/connector hub regions

(those in the top 25% of the activation/PC distribution; see the Supplemental

Experimental Procedures for PC definition) to low activation/non-connectors

(those in the bottom 25% of the activation/PC distribution). Regions with low

signal and uncertain network assignment (‘‘unassigned’’) (Power et al., 2011)

were excluded from these and following analyses. For each sample of ROIs,

we compared FC changes using non-parametric permutation tests where

ROI labels (top, bottom quartile) were permuted. In a second approach, we

correlated FC changes for each region with continuous measures of activa-

tion/PC, using Spearman’s correlations. Finally, we used a linear regression

analysis, with Z scored regressors for activation and PC as well as their inter-

action, to jointly examine the two properties. For simplicity, only linear relation-

ships were tested in correlations/regression (scatterplots are available in

Figure S6); however, quartile analyses do not depend on linear assumptions.

For these and following analyses when more than two comparisons were

made, p values were FDR-corrected for multiple comparisons (i.e., across

tasks, across classes).

We also examined the attributes of classes of regions with combinations of

different properties: (1) ‘‘activated connectors’’ (top 25% of both PC and acti-

vation), (2) ‘‘silent connectors’’ regions (top 25% of PC, bottom 25% activa-

tion), (3) ‘‘activated simple nodes’’ (top 25% activation, bottom 25% PC),

and (4) ‘‘silent simple nodes’’ (bottom 25% of both activation and PC). We

(1) determined the network identities of nodes in each class, (2) measured

the absolute magnitude of within and between FC changes, (3) measured

the topography, and (4) flexibility of FC changes. Results were compared

across classes using one-way between-factor ANOVAs and post hoc using

two-sample t tests FDR corrected for multiple comparisons. See the Supple-

mental Experimental Procedures for details on these analyses and on analyses

comparing activated and silent connectors in the CO network.
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SUPPLEMENTARY FIGURES 
 

 
Supp. Figure 1: Correlation Matrices For Each Task, Related to Figs. 2-3. (A) Correlation matrices for 264 
regions during the semantic (left), mental rotation (middle), or coherence (right) tasks. (B) Differences in FC were 
seen between each individual task and rest, many of which were shared across tasks (and seen in the all-task 
comparison of Figure 4). For example, the visual system showed decreased within and increased between network 
correlations, the default mode system showed increased within and decreased between network correlations.. 
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Supp. Figure 2: Statistical Quantification of the Differences Between Task and Rest FC, Related to Fig. 3. (A) 
The distribution of p-values comparing task and rest matrices is strongly skewed toward lower values, unlike 
randomized (permuted) comparisons (p<0.001). (B) FDR correction (q<0.05) shows many connections that pass 
multiple comparisons correction, despite the large number of comparisons. (C & D) Similar effects are seen when 
tasks are considered individually.  
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Supp. Figure 3: Activation and PC for Each Region, Related to Fig. 1&4. (A) The average activation (average 
percent signal change for all three tasks and conditions compared with baseline) for each voxel is displayed on a 
projected cortical surface. (B) The participation coefficient for each of 264 regions of interest was calculated in a 
sample of 120 individuals at rest (Power et al. 2013). These summed PC values are displayed here; warmer colors 
indicate connector-hub nodes. (C) Activation during our tasks was not correlated with participation coefficient 
(Spearman’s rho = 0.08, p=0.23). Each point on the plot represents a single region. 
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Supp. Figure 4: Comparison of Raw Task and Task Residuals, Related to Fig. 4, Supp. Fig. 6. (A) FC 
calculated with raw task data showed a very similar pattern of changes as FC calculated from the residuals of task 
processing (left and center) and only small quantitative differences (right). (B) However, as would be expected, 
using raw task data without the removal of evoked activation effects artificially increases the relationship between 
FC and activation for all effects (compare with Figure 4, Supp. Figure 6).  
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Supp. Figure 5: Quartile Analysis for Each Task, Related to Fig. 4. Quartile analysis of the mean changes in FC 
for different types of nodes for individual tasks (S = semantic, MR = mental rotation, G = coherence with Glass 
patterns), displayed as the t-statistic of the difference between top and bottom quartile nodes (p-values were 
computed using permutation tests and FDR corrected for multiple comparisons across tasks; *p<0.05, **p<0.01, 
***p<0.001). (A) FC changes more for highly activated nodes than non-activated nodes (top) in all three tasks, but 
there is no consistent difference between high and low PC nodes across tasks. (B) Within network connections were 
numerically but not significantly higher for activated nodes than non-activated nodes (top). High PC nodes showed 
significantly more stable within-network FC with respect to low PC nodes in all tasks (bottom). (C) Between 
network connectivity was significantly altered in 3/3 tasks for high activation regions (top) and 2/3 tasks for high PC 
regions (bottom).  
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Supp. Figure 6: Correlations between Activation/PC and FC Changes, Related to Fig. 4, Supp. Table 1&3. An 
alternative approach was used to examine the relationship between activation/PC and changes in FC, using 
Spearman correlations (thereby treating these variables as continuous measures). We found similar relationships: a 
moderate positive relationship between activation and FC for all connections (top left) and between network 
connections (top right), and a small relationship with within network connections. We also found a significant 
positive relationship between PC and FC for between network connections (bottom right), with a significant 
negative relationship with within network connections (bottom middle), with no relationship for connections on 
average (bottom left). Individual points in the scatter plots show single nodes. FC changes were based on the mean 
absolute difference in task and rest FC, activation was defined as the absolute percent signal change of a region, and 
PC was defined as the summed PC value across thresholds. Spearman’s correlation values for individual tasks are 
reported in Supp. Table 1.  
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Supp. Figure 7: Topography of FC changes for Each Class, Related to Fig. 6. Within each class, nodes differed 
in the specific topography of FC changes. Here, we represent the predominant patterns (or sub-classes) exhibited by 
each class. Sub-classes were identified via data-driven hierarchical clustering of the FC maps. The activated 
connector class showed 3 sub-classes, associated primarily with nodes in the CO/Salience network, the DAN, and 
the anterior insula/L middle frontal gyrus, respectively. These nodes tended to show increased FC across control 
systems and relevant processing systems (i.e., visual, dorsal somatomotor), but decreased connectivity with regions 
in the default mode network. The silent connector system exhibited two main patterns of changes. The FP/DMN 
group showed increased connectivity mostly across control systems. The CO group showed decreased connectivity 
with control systems and increased connectivity with the default mode. The activated simple class showed three 
main patterns: a visual sub-class which exhibited decreased connectivity with visual regions and increased 
connectivity with control systems, a default mode network sub-class which showed increased connectivity to default 
mode regions and decreased connectivity to control systems, and a single somatomotor node which primarily 
showed decreased connectivity with other somatomotor regions. The predominant pattern of the silent simple class 
was decreased connectivity; nodes did not group well into sub-classes (besides a single somatomotor sub-class, all 
the rest had 1 or 2 nodes only). Two of these subclasses (DMN and SM-medial) showed some increases in 
connectivity with DMN regions. The typical changes seen for each sub-class are quantified in the plot to the right of 
each row, with colored dots representing the average change in FC for a set of sub-class of seeds to a target set of 
networks (as in Fig. 6). #: Note that FC calculations excluded correlations within 20mm of a seed node.  
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SUPPLEMENTARY TABLES 
 

	

 

Supp. Table 1: Correlations between Activation/PC and FC for Each Task, Related to Fig. 4, Supp. Figs. 5&6. 
Spearman’s correlations between changes in FC and activation (top set) or PC (bottom set) for each individual task. 
Results were similar across tasks. Activation was related to overall FC changes and between-network FC changes 
for all 3 tasks. PC was negatively related to within-network FC changes and positively related to between-network 
FC changes for 2/3 tasks (and numerically in the same direction in the third task; p-values FDR corrected for 
multiple comparisons). 
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Supp. Table 2: Binned Analyses with Different Bin Thresholds, Related to Fig. 4. Quartile analysis results 
contrasting FC changes for top and bottom activated regions (top-set) or high and low PC regions (bottom-set) were 
unchanged if other binning thresholds were used.  
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Supp. Table 3: Linear Regression Model, Related to Figure 4. Linear regression model explaining average 
absolute changes in connectivity across all connections (top row), within network connections (middle row) or 
between network connections (bottom row). The model included regressors for PC, activation, and their interaction. 
***p<0.001, **p<0.01 
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SUPPLEMENTARY EXPERIMENTAL PROCEDURES 
 
Behavioral Paradigms and Stimuli  
Detailed information regarding the three tasks is reported in Dubis et al. (2014); we briefly summarize relevant 
parameters here. Three runs for each task were completed in a session in counterbalanced order. Each run was 7.7 
min long. Runs consisted of two task blocks, each flanked by 50s (20 frames) of fixation. Each task had a mixed 
block/event-related design. Task blocks were initialized with a 1000ms start cue. The fixation cross changed color to 
mark the start of the task and the display indicated which button corresponded to each response category (i.e., 
“noun” vs. “verb” for the semantic task, “mirror” vs. “same” for the mental rotation task, or “coherence” vs. “no 
coherence” for the coherence task). Response hand was counterbalanced by task. The start cue was followed by 
individual trials in each task. Each trial lasted a single 2.5s frame. In a task block, 30 trials were mixed with 32 null 
events and jittered with a uniform distribution of 0-2 frames between subsequent trials. Stimuli were presented for 
500ms. At the end of the block, a 1000ms end cue appeared consisting of a color change in the fixation cross.  
 
Semantic Task: In the semantic task, participants were asked to complete a noun/verb judgment on verbal stimuli. 
Stimuli consisted of common 6-letter nouns (90) and verbs (90); 15 nouns and 15 verbs were presented in a single 
block. Words were presented in white 48pt Helvetica font on a black background. 
 
Mental Rotation Task: In the mental rotation task, two shapes were presented on either side of the fixation cross. 
Participants were asked to determine whether the stimuli were the same shape, but rotated with respect to one 
another, or mirror images. The stimuli consisted of one of 8 white 2D shapes composed of 7 squares on a black 
background. Three rotation orientation bins were used: 40-60°, 100-120°, and 150-170°. 
 
Coherence Task: In the coherence task, concentric Glass patterns (Glass, 1969), consisting of white dots on a black 
background, were presented. In the patterns, dot pairs could either be coherently aligned in a circular pattern or 
randomly dispersed. Four bins of coherence were used: 0%, 12.5% (typical perceptual threshold level [Wilson 
1997]), 25%, and 50%. Participants were asked to determine whether dots were coherently arranged or not. Dots 
were 1 pixel large (0.04° if visual angle) and presented with a density of 88 dot pairs/degree2. 
 
Data Preprocessing: 
All data was first processed using steps to reduce artifacts in the data (Miezin et al., 2000). These steps included (a) 
application of a rigid body algorithm to correct for motion within and across runs (Snyder, 1996), (b) intensity 
normalization to a mode of 1000 across the whole brain to allow for inter-subject comparisons (Ojemann et al., 
1997), (c) temporal realignment of slices to midpoint of first slice using sinc-interpolation to account for slice 
acquisition time, and (d) resampling to 3mm isotropic space and (e) transformation to a stereotaxic atlas (Talairach 
and Tournoux, 1988). During atlas registration, a subject’s anatomical image was aligned with a custom atlas-
transformed (Lancaster et al., 1995) target template using a series of affine transforms (Snyder, 1996). All spatial 
transforms are composed for one-step resampling from native to atlas space using cubic spline interpolation.  
 
FC Processing Details: 
A series of processing steps was applied to both task and resting-state time series with the aim of reducing artifacts 
in FC analysis as in Power et al. (2014). FC Processing was done in two iterations. In the first pass, data was 
minimally processed (demean, detrend, filtering; see below) for quality control and motion contaminated volumes 
(framewise displacement > 0.2; (Power et al., 2012)) were identified. All volumes with motion and 15 frames from 
the start and end of runs (to reduce filter artifacts) were marked for removal. In addition, any remaining segments of 
the data that were less than 5 contiguous frames long were marked. The marked frames were used to create temporal 
masks of censored data. Participants with fewer than 120 remaining frames were excluded from analysis (1 all-task, 
and 4 single-task participants). Only participants with both resting state and task data were analyzed in any given 
comparison. This left 28 participants in rest vs. all-task analyses and 25 participants in rest vs. single-task analyses. 
On average, 762 resting state (148 – 2809, 65% on average), 961 (291-1232, 79%) all-task, and 340 (183-414, 81%) 
single-task volumes were retained in remaining participants.  
 
In the second pass of FC processing (1) data was demeaned and detrended, (2) nuisance variables were regressed 
from the data, including whole brain, cerebrospinal fluid, and white matter signals, as well as signals from a Volterra 
expansion of motion parameters (Friston et al., 1996), and (3) a bandpass filter (0.009 – 0.08 Hz) was applied to the 
data. Notably, data from the censoring mask was ignored in the regression step, and after regression, data was 
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interpolated across censored frames using least squares spectral estimation (Power et al., 2014) to avoid 
contaminating nearby frames during bandpass filtering (Carp, 2013). In addition, (4) spatial smoothing (6mm) was 
applied to the dataset after filtering. As a final step, (5) censored frames were removed from the time series  
 
Participation coefficient (PC): PC is a measure of the distribution of connections across networks (Guimera and 
Amaral, 2005): 

𝑷𝒊 = 𝟏 −  
𝒌𝒊𝒔
𝒌𝒊

𝟐𝑵𝑴

𝒔!𝟏

 

where the i is a node, kis is the number of connections between node i to nodes in module s, and ki is the degree for 
node i. 
 
Regions with high PC are termed connector hubs. To have a robust estimate of PC for each brain region, we used 
PC values computed from a set of 120 individuals at rest across a range of graph thresholds, and then summed 
across thresholds to produce a final “summed PC” value (Power et al., 2013). Although Guimera and Amaral (2005) 
identified 7 distinct functional roles for nodes based on PC and within module degree, these 7 classes are not easily 
identifiable in FC-MRI brain networks (Power et al., 2013). We consequently focused on PC given its connection 
with disruptions after brain lesions (Gratton et al., 2012; Warren et al., 2014).  
 
Measuring Topography of Classes: We computed whole-brain seedmaps for every ROI in a class during task and 
rest (excluding voxels within 20mm of a given seed for this and all following analyses to reduce the influence of 
local signal spread). Differences in the topography between seedmaps were quantified via the average task-rest FC 
difference for a given node to voxels in each network. We report network averages grouped by the type of network 
(i.e., control network, processing network, etc.). Unlike magnitude analyses, no absolute value was taken. Analyses 
were done across ROIs and FDR corrected two-sample t-tests (corrected across network types) were used to 
determine significance. Detailed patterns of FC changes for subsets of nodes are shown in Supp. Fig. 6 (see 
Measuring topographic patterns in sub-classes of regions below).  
 

Measuring topographic patterns in sub-classes of regions (Supp. Fig. 7): Since individual nodes showed 
unique specific patterns of FC changes, even within a class, we used data-driven hierarchical clustering to identify 
sub-classes of nodes that showed similar patterns of FC changes (see Hierarchical Clustering below for details). 
Then, the topographic distribution of FC changes was quantified by averaging the FC task-rest difference for any 
given node to voxels in each network (Power et al., 2011) (voxels within 20mm of a seed were excluded from 
analysis to avoid biasing estimates by spatial autocorrelation). These were then averaged for each type of network 
(control = CO, Salience, FP, DAN, VAN; relevant processing = visual, SM; processing = SMlat, auditory; DMN = 
DMN). 

Hierarchical Clustering: Hierarchical clustering was used to identify sets of regions that showed similar 
changes in connectivity between task and rest within each class. In addition, hierarchical clustering was used to 
examine the relationship between activated and silent connector regions in the CO network. For this analysis, seed 
connectivity analyses were conducted on previously identified regions of interest (e.g., “activated connectors”), 
where the correlation was taken between a spherical ROI seed and every other brain voxel. A difference seed-map 
was created by subtracting the rest seed map from the all-task seed-map. These difference seed-maps were then 
submitted to a clustering analysis. In the clustering analysis, the distance between correlation maps was computed 
by taking a “1 - r” calculation, where “r” represents the correlation between difference maps from different regions. 
Regions within 20 mm of each seed were excluded from analysis. The distances were then entered into a UPGMA 
(unweighted paired group method with arithmetic mean (Handl et al., 2005)) hierarchical clustering algorithm in 
Matlab R2012a (7.14, [The Mathworks; Natick, MA]). In this algorithm, clusters are progressively united at each 
step based on the average distance between all points in a cluster (this approach is thought to produce relatively 
robust, unbiased estimates compared with other hierarchical clustering algorithms (Eisen et al., 1998; Ploran et al., 
2007)). A separate modularity analysis (Newman, 2006) of the linkages was used as an objective method to 
determine where to cut the dendrogram (i.e., the number of clusters present in the data at maximal modularity).  
 
Flexibility across tasks: We predicted that regions involved in task control should change their configurations in 
different tasks. Therefore, we measured how flexible, or variable, nodes were in their FC topography across tasks by 
correlating the FC task-rest difference seedmap of each node between the three tasks. We then averaged the (Fisher-
transformed) correlation values across task comparisons. Low correlations, or more across-task variability, were 
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taken to be indicative of flexibility. Flexibility was compared between classes using two-sample t-tests, FDR 
correcting for multiple comparisons between classes. 
 
Activated vs. silent connectors in CO: We compared FC topography for activated and silent connectors that were 
part of the CO network (defined as CO based on the voxelwise networks from Power 2011). The comparison 
included (a) hierarchical clustering of the task-rest difference seedmaps from all activated and silent connector CO 
regions (see Hierarchical Clustering, above; the dendrogram was cut to produce two clusters), (b) two-tailed two-
sample t-tests of the FC difference seedmap for activated vs. silent connectors (thresholded at p<0.001 uncorrected 
for visualization purposes only) and (c) average FC difference for activated and silent connectors to voxels in each 
network, sorted by network type (as above; FDR corrected for multiple comparisons across network types).  
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